SAPd

Accessibility
Design Tools

Second Edition

©
@
&
&
®

Table of Contents

Table of Contents

Welcome 5
Foreword 5
Our Mission 6
Our Target Groups 8
What’s New in This Release 9

Introduction 11
Shifting the Paradigm 11
How To Start 12

Respect the Global Accessibility Market 12
Be Aware of Remediation Costs 12
Establish a Shift-Left Strategy 13
Inclusive Design Program Strategies 15

Foundation 36

Principles 37
Designer 37
Developer 40

Annotations 43
Component Name 44
Floorplan Name 48
Design Note 51

Visual Experience 54

Principles 55
Visual Impairment 55
General Design Tips 57

Annotations 59
Color Contrast 60
Theme 65
Responsiveness 68
Text Resize 76
Text Spacing 81
Tooltip 84

Interaction Experience 20

Principles 91
Limited Mobility 91
General Design Tips 93

Annotations 95
Input Mechanism 96
Focus Order 106
Initial Focus Position 113
Focus Restore 120
Skipping Group 126

Accessibility Design Tools - Welcome Page 2

Table of Contents

Shortcut 131

Trigger 138
Motion Alternative 142
Minimum Target Size 147
Journey 151
Screen Reading Experience 156
Principles 157
Blindness 157
General Design Tips 158
Annotations 160
Reading Order 161
Label 168
Description 175
Live Message 182
Heading 188
Landmark 194
Page Title 200
Role and Properties 206
Speech Output 220
Audio Control 225
Audio Description 230
Language 233
Coghnitive Experience 238
Principles 240
Neurodiversity 240
General Design Tips 241
Annotations 244
Wayfinding and Orientation 245
Semantic Strategies 251
Error Handling 262
Motion Content 268
Time Limit 272
Multiple Ways 281
Redundant Entry 285
Auditory Experience 288
Principles 289
Hard of Hearing 289
General Design Tips 291
Annotations 292
Caption 293
Transcript 299
Closing Remarks 307

Accessibility Design Tools - Welcome Page 3

Table of Contents

308

Authors
Contributors 309
Appendix 311
WCAG 2.2 Coverage 311
References 318
Page 4

Accessibility Design Tools - Welcome

Welcome

O

Welcome

Foreword

Design exists to serve people. At SAP, this principle anchors our work as we
build enterprise software for a diverse, global user base. In an increasingly
digital world, accessibility is not optional - it is both a human and business
imperative. Our responsibility as designers, developers, and product
managers is to ensure our products are inclusive by design, enabling all
users to access, understand, and interact with our solutions effectively.

| am pleased to introduce the second edition of the Accessibility Design
Tools by SAP, a significant step forward in our commitment to inclusive user
experience. This edition reflects insights from continued dialogue with our
design and development community, alongside evolving user research.
We've deepened the focus on human needs, recognizing the diversity in
how people perceive, navigate, and use digital products.

Accessibility goes beyond the visual surface. It requires holistic thinking -
considering interaction, alternative modes of operation, and the underlying
structures that make a product usable for all. While designing for
accessibility may initially seem intangible, it is entirely achievable through
practice, iteration, and a user-centered mindset.

This guidance draws on more than 20 years of accessibility expertise at
SAP, co-created by our central Accessibility Competence Center and
product design experts across the organization. Whether you're just starting
your accessibility journey or are already experienced, we believe this
resource will support your work and inspire further impact.

At SAP, we believe inclusive design is essential to building a more equitable
digital future. Thank you for contributing to this important work. | look
forward to seeing how your efforts continue to advance accessibility
starting with design.

Nicole Windmann

Head of the SAP Accessibility Competence Center
Vice President Software Accessibility and Inclusive Design at SAP SE

Accessibility Design Tools - Welcome Page 5

Welcome

O

Our Mission

Enabling accurate and effective implementation of accessibility from the
beginning,

We, as designers, are committed to providing inclusive and seamless
experiences to all users. This includes ensuring easy access to information,
clear and efficient workflows, and communication that is both engaging and
meaningful.

The goal is to support this Shift-Left approach by addressing accessibility
earlier in the software development lifecycle. By embedding accessibility
considerations in the design phase, we reduce the challenges of retrofitting
during the development phase and ensure that we intentionally design
accessible experiences.

This handbook offers guidance and support to annotate accessibility
during the design phase. The library of visual elements serves as a resource
for informing about annotations for visual, interaction, screen reading,
coghnitive, and auditory experiences. These annotation elements can be
used on pages, screens, and components.

The annotation elements are followed by descriptions and examples so
that a designer understands how it impacts the experiences of the users.
The goal is to design for a diverse range of users, delivering them an
accessible and inclusive experience.

Accessibility Design Tools - Welcome Page 6

As you explore this handbook, we encourage you to reflect on questions
that drive this handbook such as:

Welcome

o Do we comprehend how users interact with our applications?
« Do we know what accessibility means during the design phase?
« Do we think about what distinguishes user types?

« Do we consider our users’ differences in ability or background so
that our designs enhance their understanding and ability to work
efficiently?

This handbook is not a rigid set of rules. Instead, our goal is to offer
practical proposals that enable designers to enhance design practices and
create inclusive designs that meet the needs of all users.

Irla Bocianoski Rebelo
User Experience Designer Expert and Accessibility Lead
at SAP SuccessFactors

Nina Krauss
Accessibility Specialist at SAP Product & Engineering

Stefan Schnabel
User Experience Design Expert at SAP Product & Engineering

O Accessibility Design Tools - Welcome Page 7

Welcome

O

Our Target Groups

Developers
Implement all annotated designs and requirements.
Product Managers

Plan and prioritize accessibility work and inclusive user research in the
roadmap.

Quiality Assurance Specialists

Verify visuals and behaviors against specifications and report any
deviations.

Researchers

Discover user accessibility needs and evaluate design solutions.
System Designers

Build accessible, reusable components.

UX Designers

Annotate designs to indicate accessibility requirements.

UX Writers

Write and review screen reader announcements.

Visual Designers

Define visual specifications that fulfill accessibility requirements.

Accessibility Design Tools - Welcome Page 8

Welcome

O

What’s New in This Release

The first edition of the SAP Accessibility Design Tools was released in
December 2023. It was created to help designers focus on, and work with,
accessibility annotations in wireframes and components. It also served to
ease the communication between designers and developers.

Since then, the annotations have been applied by designers from 160 SAP
teams to create numerous accessibility design specifications, with several
annotation inserts reaching up to 10,000 in a single week.

Annotations, such as keyboard keys, reading order, focus order, component
name, and role are the most popular, and together, they have been used
over 90,000 times in the past year.

Accessibility Design Tools V1 - Internal X

Analytics T Components v Year

Component insertions Select library

J\/\NJW

Figure 1: Accessibility Design Tools Usage June 2023 - June 2024

Accessibility Design Tools - Welcome Page 9

Welcome

This revised second edition of the SAP Accessibility design tools includes
enhancements to existing annotations, introduces numerous new
annotations, and now incorporates information for developers. It also
features quotes from designers who use the annotations in their work.

Arefined and extended documentation structure covers a broader scope
of accessibility requirements and user groups.

Grouping annotations per persona represents users with similar disabilities,
creates empathy and makes the design annotation work more user- centric
and humane.

Annotation examples were enhanced and extended to cover more use
cases.

“The Accessibility Design Tools are unrivaled in
their ability to facilitate detailed screen reader and
keyboard specifications, aiding in both technical
exploration and implementation, and promoting
effective collaboration with developers to ensure
the creation of truly accessible designs.”

Marvin Gille — UX Designer & Accessibility Advocate

Accessibility Design Tools - Welcome Page 10

Introduction

al

Introduction

Shifting the Paradigm

Design beyond the visible

Accessibility is design quality. It means usability under diverse conditions
and adaptability for different contexts, bodies, and minds.

Strong usability and interaction principles are not just good design, they are
the foundation of accessibility on any platform, desktop or mobile.

A designer truly committed to accessibility thinks beyond the visuals. They
annotate designs to ensure that every user, including those with low vision,
coghnitive challenges, or limited mobility, is considered from the start.

However, designing for the invisible experience, what screen readers and
assistive technology interpret, can be tricky.

The same is true for keyboard design, for users who might prefer keyboard
over mouse. Here, the entire experience depends on a logical, intuitive
focus order, as well as visual cues that guide the user. That is where we
come in.

We will show you how to turn visible Ul elements into a clear invisible
structure that screen readers can interpret. This will support inclusive and
intuitive navigation and interaction, whether a user is using a mouse,
keyboard, or gestures.

By understanding how users rely on visible cues to navigate and interact,
you will demonstrate competency in creating inclusive experiences, from
your first design draft to the final delivery.

This thought-provoking introduction invites you to shift your mindset
toward more inclusive and accessible design. Embrace accessibility as a
core design principle by accepting the challenge to rethink your design
approach.

Accessibility Design Tools - Introduction Page 11

Introduction

How To Start

Respect the Global Accessibility Market

Although the global accessibility testing market is huge, it is common that
teams miss the opportunity to integrate accessibility into development and
design due to a lack of awareness, expertise, and prioritization.

Meanwhile, the global accessibility testing market is already quite
significant, valued at USD 564.73 million in 2023, and projected to grow
over 50% to USD 825.43 million by 2032.*

This growth reflects a market which focuses primarily on audits, automated
testing, and manual evaluations. Unfortunately, this reactive approach to
accessibility is expensive and highlights the ongoing challenges teams may
face in proactively embedding accessibility throughout the development
process.

Be Aware of Remediation Costs

Design sits at the earliest stage of the software development lifecycle,
making it the most effective point to embed accessibility and prevent
future defects.

Addressing accessibility during design is not only good practice; it is also
strategic. Costly remediation, a poor user experience, and legal risk are the
common consequences of waiting until the later stages of development.

Employers account for 92% of all case for lawsuits filed under the
Americans with Disabilities Act (ADA) since 1992. With high success rates
and the associated costs, it is an essential need that digital products are
accessible and inclusive.* Industry estimates show that addressing defects
early, during the design phase, costs just 1x to fix, while waiting until after
release can make corrections up to 100x more expensive.'®

Early planning for accessibility not only helps avoid costly rework but also
ensures compliance with laws such as the Americans with Disabilities Act
(ADA), meeting both legal requirements and growing user expectations.

Accessibility Design Tools - Introduction Page 12

Introduction

Establish a Shift-Left Strategy

Using a Shift-Left approach ensures that your team creates inclusive
experiences from the start. This reduces risk, improves quality, and
empowers all users.

Cost of fixing defects 100x

m Development Quality Testing Post-Release
Transfer of knowledge & skills Shift Left from global a11y testing industry

Figure 2: Shifting focus from defect detection to prevention helps teams
avoid issues proactively.

A Shift-Left strategy brings accessibility and inclusion to the forefront of
design and research, embedding them early in the process rather than
waiting until development or post-release phases. By planning inclusive
experiences from the beginning, teams can prevent accessibility issues
before they arise, avoid costly retroactive fixes, and ultimately create better
experiences for all users.

When usability is thoughtfully integrated from the outset, it helps avoiding
lengthy discussions later about how to address accessibility gaps. And if
questions arise along the way, revisit your usability principles and ask
yourself: What more can | do to enhance accessibility for all users?

This approach empowers designers and researchers to define inclusive
interactions upfront, based on user needs, behavior, and expectations. With
clear design and accessibility specifications, developers can implement
with greater confidence, efficiency and accuracy, resulting in a more robust
and accessible product from the start. The Shift-Left strategy also reduces
the burden on developers by preventing accessibility issues earlier in the
process, rather than resolving them late in the cycle.

Despite this proactive approach, testing and auditing remain still very
important and hold a strong position in the market. Accessibility specialists
have a deep and structured understanding of accessibility requirements,
international standards, and assistive technologies. Shifting from just
detecting defects to proactively avoiding them is a true advancement for
accessibility. Adopting a Shift-Left approach for designers is an opportunity
to integrate accessibility from the start of the design phase.

To achieve Shift-Left, we need to follow the steps of people who audit
systems for accessibility. Testers have undergone rigorous training and have
extensive hands-on practice. They translate abstract guidelines, such as the

Accessibility Design Tools - Introduction Page 13

Web Content Accessibility Guidelines (WCAG), to identify defects and
suggest improvements. They have the clarity, and the precision needed to
identify, document, and guide teams toward meaningful accessibility
enhancements, which is expertise that many designers and developers
lack.

Introduction

To successfully adopt the Shift-Left approach, let’s address the basic
concepts of accessibility, understand the accessibility life cycle, and
prepare to work on accessibility documentation.

@ Accessibility Design Tools - Introduction Page 14

https://www.w3.org/TR/WCAG22/

Inclusive Desigh Program Strategies

An inclusive design program does not happen by chance; it grows from
deliberate learning, planning, and practice.

Introduction

This chapter outlines strategies to strengthen accessibility at every stage:
first, by improving your skills through historical context, understanding
diverse user groups, and applying both testing and training.

Next, by developing strategy with practical blueprints and shared libraries
that make accessibility repeatable.

Finally, by establishing a design process that embeds annotations,
checklists, and structured reviews into everyday work.

Together, these approaches help teams move from intention to execution,
building digital products that are accessible, consistent, and sustainable.

@ Accessibility Design Tools - Introduction Page 15

Introduction

1. Improve Your Skills

Know the Historical Context

Understanding the history of accessibility helps explain today’s laws and
policies. The timeline below traces key milestones from early US Civil
Rights laws to international standards that continue to shape accessibility
regulations worldwide.

Table 1: Key milestones in the history of accessibility

Year | Milestone Significance

1973 | Rehabilitation Act (US) First major federal disability rights law; established

foundation for disability civil rights movement globally

1986 | First Screen Reader Jim Thatcher created the first screen reader at IBM which

was later released to the public.

1990 | Americans with Landmark civil rights law serving as model for international
Disabilities Act (US) disability legislation; covers employment, public

accommodations, and government services

1998 | Section 508 Amendment First law requiring government digital accessibility;
to Rehabilitation Act (US) | influenced global standards for accessible technology

1999 | Web Content Accessibility | The Web Accessibility Initiative (WAI) of the World Wide
Guidelines (WCAG) 1.0 Web Consortium (W3C) developed a standard to ensure

the accessibility of web content. The WCAG 1.0 consisted
of 14 guidelines with 65 checkpoints.

2008 | Web Content Accessibility | The Web Accessibility Initiative (WAI) introduced with
Guidelines (WCAG) 2.0 WCAG 2.0 four essential principles: perceivable, operable,

understandable, and robust. With the principles came 12
guidelines and 61 success criteria. The success criteria are
from now on divided in the three conformance levels A, AA,
and AAA.

2009 | VoiceOver and TalkBack Starting with the release of the iPhone 3GS, VoiceOver by
Screen Reader for Apple was the first screen reader for smartphones,
Smartphones enabling users with visual impairments to navigate on touch

devices. The same year TalkBack was released by Google
for Android devices.

2016 | EU Web Accessibility With Directive (EU) 2016/2102 the public sector
Directive organizations of the European Union (EU) must meet a

minimum of accessibility requirements. The member states
of the EU had to transpose the directive into national
legislation to ensure the accessibility of public sector
organizations.

2018 | Web Content Accessibility | With version 2.1, the WCAG provided 17 additional success
Guidelines (WCAG) 2.1 criteria to also address mobile accessibility, people with

low vision, and people with cognitive and learning
disabilities.

2019 | European Accessibility With Directive (EU) 2019/882 accessibility requirements
Act (EAA) also affect the private sector. A selection of important

products and services is required to meet a minimum of
accessibility. The EAA also covers digital products including
for example e-commerce.

2023 | Web Content Accessibility | With version 2.2, the WCAG provided nine additional
Guidelines (WCAG) 2.2 success criteria.

2025 | European Accessibility Since June 25", 2025, all requirements of the European
Act (EAA) Accessibility Act must be implemented for the affected

products and services.

Understand User Groups and Disabilities

When designing for accessibility, it is essential to recognize the diverse
range of users who benefit. This includes people with disabilities, who are

Accessibility Design Tools - Introduction

Page 16

Introduction

al

grouped by shared characteristics such as vision, mobility, hearing, or
coghnitive differences.

Accessibility benefits not only those with permanent disabilities, but also
individuals experiencing temporary challenges such as a broken arm,
recovering from surgery, bright sunlight, or a noisy environment.

By considering these overlapping needs, we create experiences that are
more usable for everyone.

The SAP Accessibility Design Tools provide a simplified approach to
covering the 50+ WCAG requirements by introducing personas that
represent groups of people with similar disabilities.

This strategy aims to help designers and other stakeholders build empathy
with end users who have specific accessibility needs. By aligning WCAG
requirements with key personas, we enable a more efficient design
documentation process, supported by checklists and practical guidance
associated with these personas.

These personas appear in each of the five main disability groups as they
often overlap with permanent conditions.

In this strategy, each persona acts as a bridge to understanding real user
needs, helping ensure that accessibility is integrated with intention and
consistency.

Accessibility Design Tools - Introduction Page 17

Introduction

Table 2: Different disability groups — experience relationships

Low or Limited Vision Limited Mobility Blind or Very Limited Vision
The visual experience explores The interactive experience The screen reading experience
crucial factors to keep in mind addresses what to look for when delves into what should be
when designing for people with designing for users with limited considered for screen reader
limited vision, such as being color ~ mobility. They may findithardto ysers that may be blind or with
blind, having short vision, tunnel control different input very limited vision.
vision, etc. mechanisms like a mouse or touch

devices.

Cognitive Disabilities Auditory Disabilities Situational and

Temporary Disabilities
The cognitive experience The hearing experience These users benefit from
highlights important aspects to addresses aspects to look for accessible features when they find
focus on when designing for regarding users that are deaf or themselves in situational or
people with cognitive issues such hard of hearing, such as temporary contexts.
as concentrating, remembering or supporting captions, transcripts or
learning. sound alternatives.

Situational & Temporary Disabilities

We must expand what we understand about usability to address invisible
experiences. This involves providing conditions for all types of users to
enjoy the experience yet perform tasks safely, effectively, and efficiently.

Temporary and situational disabilities differ from permanent disabilities in
terms of their duration and impact on the ability of the individual to interact
with the environment, including digital products. Including "situational"
disabilities in each of the five main disability groups helps designers
recognize that situational or temporary limitations often overlap with
permanent conditions, requiring special attention during the design phase.

Each chapter includes a note explaining how the disability group can be
expanded to cover situational disabilities.

o Permanent Disabilities: These are long-term, or lifelong conditions
often present from birth, accident, or illness. They require ongoing

Accessibility Design Tools - Introduction Page 18

Introduction

al

accommodation and assistive technologies (e.g,, screen readers,
hearing aids, prosthetics).

o Temporary Disabilities: Short-term impairments from injury, illness, or
other events. Ability typically returns after recovery.

« Situational Disabilities: Context-specific limitations caused by the
environment or circumstances (e.g., poor lighting, noise, stress,
fatigue) and are not tied to a permanent condition.

By understanding the differences between permanent, temporary, and
situational disabilities, you can design more flexible and inclusive
experiences that accommodate a wide range of users, even if their needs
change over time or depend on external conditions. The table below
shows key contrasts between permanent, temporary, and situational

disabilities.

Table 3: Permanent, temporary and situational disabilities

Duration

Impact on Daily
Life

Recoverability

Examples

Design Focus

Remarks

Permanent
disabilities
Lifelong or long-term

Consistent and ongoing
adjustments are
needed

Not recoverable or only
partially recoverable

Blindness, permanent
mobility impairments,
chronic hearing loss

Assistive technologies
and long-term
accommodations

Often require persistent
accommodations and
assistive technologies
(e.g., screen readers,
sign language
interpretation,
alternative input
methods).

Accessibility Design Tools - Introduction

Temporary
disabilities
Short-term
(recoverable)

Short-term
adjustments for a
limited period

Full recovery
possible with time
or medical
treatment

Broken limb,
temporary vision
loss, concussion

Short-term
adaptability and
accommodations
for a fixed period
Require short-term
solutions or
assistive devices
(e.g., voice-to-text
for a person with a
broken hand, large-
button keyboards
for people
recovering from
surgery).

Situational disabilities

Variable, based on
context (can be
momentary or hours-
long)

Context-specific, often
requiring temporary
adjustments for specific
tasks

No long-term recovery
needed; situation
resolves when context
changes

Sweating hands, fatigue,
stress, temporary loud
background noise

Context-aware design
and flexibility based on
situational needs

Can be mitigated by
adaptive and responsive
design, allowing users to
adjust settings or
interfaces depending on
the environment or
mental state (e.g., offering
high contrast mode in a
bright environment or
one-handed mode when
holding something).

Page 19

Think Beyond Assistive Tools Support
Popular misunderstandings include:
e Supporting Accessibility is just supporting assistive technology

e All users with disabilities will use tools to access content
¢ “We do it on top for assistive tech users”

Introduction

In reality,

e Accessibility is not just about assistive technology compatibility. It is
fundamentally built in and not added on after.

¢ Not everyone with a disability uses tools. All users benefit from good
design.

¢ "Doing it only for assistive tech users" misses the broader inclusion
impact.

When accessibility is discussed in projects, some stakeholders quickly
equate it with screen reader compatibility or keyboard navigation, which
are tools commonly associated with assistive technologies.

While these are critical, it is a misconception to think accessibility is only
about supporting assistive tech users.

Let’s break that down by looking at common assistive technologies and
beyond, because not all disabilities require assistive tools, and not all
accessibility needs are solved by supporting devices alone.

@ Accessibility Design Tools - Introduction Page 20

Introduction

al

Table 4: Disabilities, needs and assistive tools

headings, labels,
and interaction
flows are
confusing or

assistive tech
users. Many older
users or people
using mobile in

mouse. If buttons
cannot be reached
via tab, or if
timeouts interrupt

at all. They
rely on clear
layouts, plain
language,

Blind Users Low and Limited | Limited Mobility | Cognitive Hearing
Vision Impairments | Impairments

Assistive | Screen readers | Screen magnifiers | Switch devices Some will Many will use:
Tools (e.g, NVDA, use:

JAWS, High contrast Alternative Hearing aids

VoiceOver) settings keyboards Text-to-

speech Cochlear
Braille displays | Zoom and Voice control implants
browser tools (e.g., Dragon Distraction
Voice assistants NaturallySpeaking) | blockers Live
captioning or
On-screen Simple transcripts
keyboards interface
overlays

Remarks | Itis notenough | Design choices Someone with a Many users Captions

to say: "We such as tiny text, repetitive strain with ADHD, help

support screen low contrast, or injury might just dyslexia, or everyone in

readers." If the hidden focus use a standard memory various

content indicators hurt far | keyboard but challenges do | situations:in

structure, more than avoid using a not use tools | noisy

environments,
while
multitasking,
or learning a

inconsistent, bright sunlight the task, it is not consistency, second
even the best benefit from about technology. | andreduced | language. If
screen reader accessible visual | Itis about cognitive alerts rely
cannot create a | design, without usability. load, none of | only on
good needing which sound
experience. And | specialized tools. depend on without visual
sighted users any assistive | cues,you are
relying on tech. excluding a
keyboard lot more
navigation (e.g, people than
dueto you think.
temporary
impairments or
preferences) are
impacted too.

Accessibility Design Tools - Introduction Page 21

https://www.nvaccess.org/
https://support.freedomscientific.com/downloads/jaws/JAWSWhatsNew/PreviousFeatures?version=2024&version=2024
https://support.apple.com/guide/voiceover/welcome/mac
https://www.nuance.com/dragon.html?srsltid=AfmBOoqmBRlV-hr-n4jYv6mXrnfxQwOI2N3rFvuCFJaRq-5uMCAEig_0
https://www.nuance.com/dragon.html?srsltid=AfmBOoqmBRlV-hr-n4jYv6mXrnfxQwOI2N3rFvuCFJaRq-5uMCAEig_0

Introduction

Differences between Web, Tablets and Mobile Devices

Users interact with digital products across many devices, including
desktops, tablets, and mobile phones. They use a range of input methods,
such as touch, keyboard, mouse, or voice, and receiving information
through various outputs such as visuals, audio, or haptics. They rely on
different senses to understand and interact with what you design.

Input and output devices matter for accessibility. Before adding
annotations, designers should understand how users interact with different
devices to make thoughtful, inclusive decisions.

It is essential to consider the variety of input mechanisms people use to
interact with digital products. While many rely on standard inputs, such as
keyboard, mouse, or touchscreen, users with disabilities may depend on
alternatives: screen readers with keyboard shortcuts, switch devices, voice
commands, eye-tracking systems, or adaptive controllers.

These input methods can differ significantly in speed, precision, and
interaction patterns, which means that design choices, such as target sizes,
gesture complexity, focus order, and input flexibility directly affect usability.
Ensuring that interfaces support multiple input types not only increases
accessibility but also improves the overall adaptability of a product across
devices.

Figure 3: Different challenges on different devices: Web desktop devices are
mostly used with a mouse and a keyboard, some of them also with touch
and gestures. Common interactions of Tablets and Mobile Devices are based
on touch and gestures, but some users also use keyboards to work with
them.

Most accessibility annotations apply across web and mobile platforms.
While the core principles remain the same, making content perceivable,
operable, understandable, and robust, each platform has its unique
challenges.

Native mobile devices, for example, introduce specifics such as touch
interactions using fingers of all sizes:

Accessibility Design Tools - Introduction Page 22

Introduction

e Small screens that need to fit complex content
e Support for both portrait and landscape orientations

e Built-in assistive technologies, such as VoiceOver (i0OS) and TalkBack
(Android)

Some annotations differ for mobile, especially those related to screen
reader behavior. For instance, mobile apps do not use web standards like
ARIA landmarks, and heading structures are simpler (usually a single level).

Mobile operating systems rely on gestures and touch for navigation, while
screen readers provide audio feedback. Though annotations such as
Keyboard Support are more common for web, they also apply to mobile in
cases where users connect external keyboards.

Other annotations, such as those for time limits, labels, and roles, apply
universally across digital products, regardless of the device.

Perform Automatic and Manual Testing

Accessibility is not complete until the implemented solution is tested. After
development, when the testing phase starts, accessibility testers validate
that digital products are usable by people with disabilities.

According to our experience, automated testing can catch about 20—-30%
of accessibility issues. Tools, such as Axe, Lighthouse, or WAVE can detect
issues such as missing alt text, low color contrast, missing form labels, ARIA
misuse, keyboard traps, and missing document landmarks.

But automated tools cannot evaluate whether alt text is meaningful, if the
focus order is logical, or if text in links or buttons is clear and descriptive.
Manual testing is essential for the remaining 70—80%.

Manual testing reports usability issues for screen readers, verifies ARIA and
semantic markup, confirms captions, labels, and alt text, checks dynamic
content updates, and assesses user experience across disabilities.

It also includes keyboard-only navigation, screen reader checks, visual
inspection for layout and zoom. Also, people with disabilities should be
involved in the test cycle, when possible, to get end user feedback that
may sometimes lead to necessary design iterations.

Combining automated and manual testing for full coverage is key to
checking all accessibility requirements. Automation gives speed; humans
give insight.

Some tools used to conduct manual testing are available to many as a
built-in assistive tool such as screen readers, which can be found on
desktops and mobile phones.

Accessibility Design Tools - Introduction Page 23

https://www.deque.com/axe/devtools/
https://developer.chrome.com/docs/lighthouse/overview
https://chromewebstore.google.com/detail/wave-evaluation-tool/jbbplnpkjmmeebjpijfedlgcdilocofh

Introduction

Design Context

A designer is not expected to conduct all these testing tasks. Instead,
accessibility annotations drive implementation and prevent many common
issues. If a designer wants to verify how a design experience performs after
implementation, some testing tools can support that review.

Some resources for designers to test an implemented application are
available online as browser extensions. Instead, accessibility annotations
drive implementation and prevent many common issues. If a designer
wants to verify how a design experience performs after implementation,
some testing tools can support here.

Many checks do not require any tools and can be conducted manually. The
annotation design checklists can be used as a reference to plan a design
test or heuristic evaluation.

All operating systems (Windows, iOS, Android, etc.) offer a set of
configurations to adjust visual elements, including color contrast, theming,
and text spacing. Explore these settings and conduct visual testing of your
application. Observe how the Ul elements behave when adjusting to the
selected settings.

Built-in assistive technologies for testing on desktop computers and
laptops include the screen reader, Narrator, on Windows and VoiceOver on
Mac. For mobile devices, there is the screen reader TalkBack on Android
and VoiceOver for iOS.

Chrome supports various automatic accessibility checks, including
Lighthouse which is built into its DevTools. Open it on Apple with
OPTION+CMD+I and on Windows using F12.

Additional features are available through tools that can be installed
separately on Windows, such as the Jaws and NVDA screen readers.

Finally, there are browser extensions for accessibility testing, including
tools for Color Contrast or Landmark and Heading structure analysis.

Although developers are the primary users of these tools, designers can
and should take advantage of them as well, since an issue flagged by
automation may reveal not just a technical bug but also a potential
weakness in interaction or navigation that benefits from a designer’s
manual review.

Figma Support

The collection of annotations for accessibility offers a confident strategy for
designers to create accessible designs.

Accessibility Design Tools - Introduction Page 24

https://support.microsoft.com/en-au/windows/complete-guide-to-narrator-e4397a0d-ef4f-b386-d8ae-c172f109bdb1
https://chromewebstore.google.com/detail/wcag-color-contrast-check/plnahcmalebffmaghcpcmpaciebdhgdf
https://matatk.agrip.org.uk/landmarks/
https://chromewebstore.google.com/detail/headingsmap/flbjommegcjonpdmenkdiocclhjacmbi

Introduction

To streamline accessibility work within the design process, SAP developed
its own set of SAP Figma plugins dedicated to accessibility annotations.
These plugins allow designers to go beyond visual polish and document
critical details such as focus order, reading order, heading hierarchy, and
landmarks directly within their design files.

By using plugins, annotations can be created faster and more efficiently,
reducing repetitive manual effort. Designers can also manage annotations
more effectively by switching annotation variants, fixing the sequence,
removing unnecessary elements, or reordering items as the design evolves.
This ensures accessibility documentation remains accurate, consistent, and
easy to maintain.

Explore the SAP A11Y Plugins for Focus Order, Reading Order, Headings
and Landmarks at
https.//www.figma.com/community/plugin/1072563579293318294/accessi
bility-design-tools-second-edition.

Additionally, the Figma community offers many plugins, including free and
paid plugins. Here are some of them:

e Contrast: Checks color contrast between two elements

e Able: Checks color contrast

e Color Blind: Simulates different types of colorblindness

e Text Resizer Accessibility Checker: Simulates readability by
increasing or decreasing font sizes

e Accessibility Assistant: Offers support to conduct usability
walkthrough and to create annotations for screen reader and
keyboard

e Stark: A paid plugin that offers color contrast check, typography, alt-
text, focus order, Landmarks and more.

e Evinced: A paid solution that provides full support including
annotations, accessibility design report, and design analysis for
single elements and full design.

Figma Accessible Prototype

Figma offers accessible prototypes that support screen readers such as
VoiceOver, JAWS, and NVDA, but only in the desktop app or web browser,
not on mobile or mobile web. The screen reader mode converts your
design into HTML, enabling semantic interpretation of elements. Image fills
become images labeled with layer names, components turn into
landmarks, and interactive “On click” actions become buttons or links.

Importantly, focus outline indicators in Figma remain limited, so keyboard
users often do not see visual feedback during tab navigation. It is important

Accessibility Design Tools - Introduction Page 25

https://www.figma.com/community/plugin/1072563579293318294/accessibility-design-tools-second-edition
https://www.figma.com/community/plugin/1072563579293318294/accessibility-design-tools-second-edition
https://www.figma.com/community/plugin/748533339900865323/contrast
https://www.figma.com/community/plugin/734693888346260052/able-friction-free-accessibility
https://www.figma.com/community/plugin/733343906244951586/color-blind
https://www.figma.com/community/plugin/892114953056389734/text-resizer-accessibility-checker
https://designtoolingstorage-blob-proxy-g0b7ctbra7c7bbe8.westus2-01.azurewebsites.net/designtoolingstorage/focus-order-plugin/Focus%20Order%20tutorial.pdf
https://www.figma.com/community/plugin/732603254453395948/stark-contrast-accessibility-checker
https://www.figma.com/community/plugin/1280513911959811739/design-assistant
https://help.figma.com/hc/en-us/articles/7810391964695-Accessible-prototypes-in-Figma

to note that focus outline indicators in Figma remain limited, so keyboard
users often do not see visual feedback during tab navigation

Watch Training Videos

Introduction

All the information you need to learn about accessibility is available online
such as WCAG by W3C, which has a comprehensive list of requirements
explaining how to prepare a web application to be accessible. This list is
also used to validate and measure accessibility in web applications.

You might find the content of W3C dense and not well-tailored for
designers, since they avoid any design direction. The instructions focus on
the experience of the user and support developers in coding for
accessibility. But as designers, we want clear messages and instructions to
help us work efficiently and effectively during the design phase.

SAP created a series of training videos to explain how to annotate designs
and how interfaces properly designed for accessibility impact the
experience of the end user.

Enjoy!

e Design Annotation for Accessibility

e Keyboard Support in Ul Components

e Screen Reader Support in Ul Components
e Prepare For All Users

e Prepare for Keyboard Usage

e Screen Reader Usage Part 1

e Screen Reader Usage Part 2

¢ Annotating Mobile Apps

“As a designer focused on creating a transparent
user experience, | look for strong examples of
how to do so with accessibility in mind - and the
Accessibility Design Tools offer exactly that.”

Dominika Zamojska - Senior User Experience Design Specialist

@ Accessibility Design Tools - Introduction Page 26

https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_oj4tdsif
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_7yvihevg
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_nqo7tvl3
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_j48edi71
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_3pnq1c4q
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_z4kaof3s
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_pmb51i5f
https://sapvideoa35699dc5.hana.ondemand.com/?entry_id=1_3f7io5hk

Introduction

2. Develop a Strategy

List components used on the application, floorplans, and pages as this will
set the basis for consistent re-use of structural elements, such as
components and floorplans, allowing you to annotate them only once.

An inventory of components reduces the amount of work needed to
annotate designs and results in an efficient development of the inclusive
experience. The precision of components selected to create the
experiences correspond to the same accessible control used by
development to code the visuals and interactions.

Create Blueprints as Foundation

Coghitive Hard of Hearing

Screen Reading

Visual Design Keyboard Support

/A=) g/
[ol : i 1 | ! |
i "' Component N . Control & ' Application B\ " Front-End
\‘ ~=-" Designer T Framework Designer ~--" Developer

— ‘ Developer s
£
[Focus: Annotate Components] Implement Control

Goal: Designers create Goals: Developers . . .
GQ reusable components implement spec'd =) Goal: Designers use TP Goals: De_v_elgpers
) with accessibility in components according j components to ensure puldiapplicatiopiiioys
%0 ind Y {0 Sl iy = B accessibility at the with fewer accessibility
min Y page and flow level. concerns.

Task: Create, design components
& Floarplans to be inclusive
producing accessibility
specification documents per
component.

Output:
Design Component Library

requirements.

Task: Code controls and floorplan
following accessibility
specifications.

Output:

Accessible Control

Task: Create, design, compose
pages, overlays & flows producing
documents to inform accessibility
specifications.

Output:
Pages, Overlays & Flows A11Y
Specification

Task: Implement designed pages
and flows following accessibility
specifications handed over by
designers

Qutput
Accessible Application

Quality & Testing

Framework Inventory Prepared for Accessibility Application Design consurn%sr gev;gaosncegsp% complements accessibility

Quality & Testing results in ally defects on the application which must be i

Accessibility defects for component and control must be addressed addressed

Figure 4: Infographic relationship between design and development

A blueprint is a detailed plan or guide that outlines the structure,
components, and relationships of a system before it is built. In product
development, specifically design and accessibility, a blueprint serves as a
shared source of truth that informs how something should function and
how it should be constructed across teams.

A blueprint is not just a static diagram. It is a strategic foundation for
collaboration, consistency, and accountability.

Think of accessibility as the electrical wiring plan within a building
blueprint. While not immediately visible, it is essential for functionality,
safety, and the experience of anyone who enters the space. If it is not

Accessibility Design Tools - Introduction Page 27

Introduction

al

properly designed from the start, making changes later can be
complicated, costly, and risky (IBM Sciences Institute, 2023).

Just like an architect collaborates with engineers and electricians early on,
designers collaborate with developers and technical writers. Accessibility
must be integrated in the design phase. This ensures all components,
layouts, and interactions support inclusive use from the ground up.

The accessibility blueprint of your product is the result of a thoughtful
process that includes building detailed inventories and aligning closely
with engineering. These artifacts are shared across teams ranging from QA
and front-end developers to technical writers and product managers, which
ensuring everyone is working from the same foundation.

Easy access to well-documented components and controls significantly
improves efficiency. When Component Designers define reusable
components with accessibility in mind, developers can implement them
consistently and confidently. This empowers Application Designers to use
those components knowing accessibility has been addressed at the
component level and implemented accordingly, allowing them to focus on
ensuring accessibility at the page and flow level.

Front-end developers can then build application flows with fewer
accessibility concerns and less need for rework or troubleshooting.

Accessibility Design Tools - Introduction Page 28

Introduction

Leverage Libraries and Inventories

Plan, Prepare and Share

Extensive libraries of design components and implementation techniques
are powerful tools for designers, front-end developers, and engineers. They
help create consistent user experiences and significantly improve
efficiency in meeting accessibility requirements.

A design component library should include accessibility annotations
directly in the documentation, making it easier for designers to incorporate
inclusive practices from the start. In parallel, an accessible control library
used by developers should offer configurable properties to adapt the
controls to specific contexts without compromising accessibility.

The biggest advantage of these libraries is efficiency, the ability to produce
high-quality work with less effort. Efficiency in design and development
thrives on reusability, and accessible libraries make it possible to work
faster while maintaining consistency and quality.

To maximize performance:

e Ensure easy access to component libraries with documented
accessibility specifications.

e Make control libraries readily available and confirm they are
implemented with accessibility in mind.

e Use consistent visuals, behavior, and terminology. User Assistance
Developers can support this by reinforcing shared language across
teams.

When component libraries used by designers and control libraries used by
developers are aligned have matched naming conventions and consistent
interaction patterns, everyone involved can work more confidently and
effectively.

To support this alignment and drive efficiency, maintain three key
inventories:

e Floorplans: Reusable layout templates for pages

e Components: Reusable Ul elements, including core and custom
components

e Pages: Alist of all implemented pages in the solution, forming the
ultimate Information Architecture of your application

“As noted in the Press Release W3C Issues Improved Accessibility
Guidance for Websites and Applications, “WCAG 2.1 will be supported by
an extensive library of implementation techniques and educational
materials.”?® This reinforces the value of well-maintained, accessible

Accessibility Design Tools - Introduction Page 29

https://www.w3.org/press-releases/2018/wcag21/
https://www.w3.org/press-releases/2018/wcag21/

Introduction

libraries as an essential part of any inclusive design and development
workflow.

At SAP, designers and developers are provided with libraries to support
their jobs. Designers have access to reusable components in a Figma
library and Design guidelines documentation with accessibility reminders.
Developers have access to seamless control libraries to implement the
experience planned by the designer.

Table 5: SAP libraries and guidelines

Design Library

Specification

To speed up the work while
assembling pages, designers

use components ready to use

and directly available from a
central library. Sometimes,
more than one library is
available (for example, core
and customer components).
The Material Design by
Google is an example of a
core library. The component
contains visual design
specifications. In Figma,
reusable components can
also contain predefined
behaviors, making the
creation of functional
prototypes more efficient.
Designers are owners of
these libraries.

Control Library

\ﬁ 5 Fundamental

Implementation

This library contains
controls (implemented
components) carrying all
visual aspects needed to
fulfill accessibility
requirements, such as color
contrast. It may include
behaviors for interaction
and navigation, screen
reader, and keyboard
support. Engineering is the
owner of this library, and
designers consult controls
to check look and behavior.

Design Guidelines

E ':’ Fiori Design Guidelines

Direction

Design guidelines are the
base of a design system.
They provide designers
and developers with
valuable references to
support their design
decisions as they build
new controls. An example

is the SAP Fiori Design
Guidelines.

“Using our accessibility design tools enhances
clarity and accuracy by using a consistent SAP-
wide shared language when collaborating with
teams.”

Sup Suh — Senior Product Designer

Accessibility Design Tools - Introduction Page 30

https://m3.material.io/
https://www.sap.com/design-system/fiori-design-web/discover/sap-design-system/sap-fiori?external
https://www.sap.com/design-system/fiori-design-web/discover/sap-design-system/sap-fiori?external

Introduction

3. Establish an Accessibility Design Process

Use Annotations

Annotating accessibility in the design phase requires diligence and
preparation. Yet, remembering and applying every accessibility aspect
relevant to the design phase is a heavy cognitive task.

Start by planning and aligning with product management. Then, plan the
accessibility blueprint of your product as illustrated in Figure 4 that
describes the relationship between design and development.

It explains why it is essential to understand the difference between the
component design library used to produce designs and the control
libraries used by front-end developers to code the application.

To help you accelerate accessible designs, we propose an annotation set
for components that address accessibility. A designer supported by a
library with accessible components contributes to a consistent inclusive
product. Use checklists to track accessibility guidelines and ensure all
aspects are considered during the design phase.

This guideline aligns with and covers many WCAG standards and
international requirements to annotate designs. It covers many aspects
needed to ensure that you deliver an accessible product, including the four
groups of requirements from the Web Content Accessibility Guidelines
(WCAG 2.2): Perceivable, Operable, Understandable, and Robust.

SAP Design Guidelines offers a variety of elements to annotate screens and
components to indicate accessibility considerations during the design
phase.

To annotate designs and create accessibility specifications, follow the
checklists and use the annotation assets from the library for precise design
documentation. Use the annotations pointing to an element or highlighting
a specific area. This can be done manually or using available plugins for
screen reading, focus order, landmarks, and headings.

Work with Checklists

In this guideline, there are six main groups of annotations to support an
accessible design, and they are available as checklists.

A checklist is a good tool to guide designers and track the progress of
fulfilling accessibility through annotations. Over time, creating annotations
will become a natural part of the design process, strengthening your ability
to connect accessibility concepts with core usability principles.

Accessibility Design Tools - Introduction Page 31

Introduction

The Accessibility Checklists by SAP were created to guide designers and
help them observe and consider every accessible requirement during the
design phase and when creating documentation.

Plan Designh Reviews

One last note! Plan for accessibility design reviews. An A11Y expert
provides a critical eye on the design specifications, ensuring all
accessibility standards are met and usability is optimized for everyone.
Incorporating accessibility into design reviews not only fosters inclusivity
but also enhances usability, ensuring a more seamless experience for all
users.

Annotating accessibility in the design phase requires diligence and
preparation. Yet, remembering and applying every accessibility aspect
relevant to the design phase is a complex task.

During the design phase, accessibility requires structured alignment and
checkpoints to prevent blockers and barriers. A strong practice is to start
with an accessibility blueprint (annotation specification) to capture design
intent, followed by informal checks with accessibility experts to validate
early decisions.

Teams should then conduct a formal review, where potential issues are
documented, and outcomes are tracked. Designers are expected to
address the concerns raised, updating annotations and design details as
needed to avoid violations.

This step-by-step approach ensures accessibility is integrated into the
design review process rather than left as a late correction

1. Alignment

Start aligning with product management, development, and testing teams
to ensure a shared understanding of accessibility goals, constraints, and
timelines. This early collaboration helps clarify expectations, surface
potential blockers and barriers, and ensure accessibility is embedded into
user stories, technical planning, and testing coverage right from the start.

This is also the moment to establish a common accessibility vocabulary
and agree on how issues will be categorized. For example, issues can be
defined as “potential barriers”, which may impact usability for some, and
“potential blockers”, which can prevent access entirely. This clear
categorization will streamline communication and prioritization throughout
the process.

Accessibility Design Tools - Introduction Page 32

Introduction

The alignment is also essential to understand the difference between a
component design library used to produce designs and the control
libraries used by front-end developers to code the application.

2. Accessibility Blueprint

Prepare the design specification using the accessibility checklists. This will
be the product blueprint. Checklists help the designer to track every
accessibility requirement needed during the design phase. This collection
of accessibility annotations and the guidelines align with numerous WCAG
standards and international accessibility requirements for design
annotation.

To help you accelerate the creation of accessibility specifications consider
a central documentation where components also address accessibility and
are annotated to indicate possible configurations and usage to meet visual,
interactions, and cognitive and screen reader requirements. A designer
supported by a library with accessible components contributes to an
assertive inclusive product.

The Accessibility blueprint is complete when the designer annotates all the
screens and flows using all applicable annotations to cover visual, screen
reading, interaction, cognitive and auditory experiences.

3. Informal Check with Experts

Consultations are informal yet valuable checkpoints with accessibility
design experts throughout the design process. These quick, collaborative
discussions provide timely feedback, help clarify uncertainties and ensure
that accessibility considerations are thoughtfully integrated before formal
reviews. By making consultations part of the workflow, teams can prevent
issues early, build confidence in their decisions, and reinforce a shared
understanding of inclusive design best practices.

But most importantly, consultations help guide designers in shaping a clear
and complete accessibility design specification, or product blueprint, an
essential handoff document for developers and testers.

These expert touchpoints ensure that annotations are meaningful, precise,
and aligned with technical expectations, reducing ambiguity and
interpretation errors during implementation. This shared clarity between
design and development fosters consistency across teams, supports more
efficient testing, and ultimately leads to a more robust and accessible end-
to-end user experience.

4. Formal Review

Accessibility Design Tools - Introduction Page 33

Introduction

Final check of an accessibility specification before implementation.

A formal design review is a second pair of eyes in the design specification
to ensure accessibility has been fully addressed. The A11Y design expert
can use a card to collect notes from the review to indicate design decisions
that could become an acc defect reported by a quality team or in future by
customers. These can be used as a plan for future fixes informing
dependencies, upcoming requirements or deprecation.

This process is an assessment of the design annotations to identify
potential blockers or barriers that may be reported by the testing team at
the end of the software development lifecycle, or worse, by customers after
release. This process aims to ensure that the design is usable and
navigable by all individuals, adhering to accessibility standards and best
practices using the A11Y checklists.

Checklists are also helpful to support the expert during the review as they
track accessibility requirements and ensure all aspects were considered in
the design specification. By following the checklists, designers can
confidently address the critical elements needed to ensure an accessible
product, covering all four core principles of WCAG 2.1: Perceivable,
Operable, Understandable, and Robust.

Mark the design as ready to initiate the accessibility review. This step
typically follows the completion of annotations and core user flow
definitions. The operational model you choose, whether through design
system labels, workflow tools, or direct communication, should clearly
indicate that an A11Y Design Expert is needed to assess the design.
Formalizing this step helps teams track how accessibility is being
addressed throughout the design phase and builds accountability. It also
ensures that potential accessibility issues are identified and resolved early,
reducing delays and rework during development.

5. Review Outcome

Once the A11Y Design Expert completes the review, the design is marked
as Reviewed, and the assigned Designer should fix any potential violation.
This means that the design has undergone an accessibility review, all
applicable annotations have been provided, and blockers and barriers
have been removed or explained.

However, the reviewed status does not imply that the design is free of
issues. Observations in the documentation should inform developers
about potential accessibility violations identified during the review. These
For Developers are essential for tracking, to support transparency, Cross-
team coordination, and prioritizing accessibility concerns.

Accessibility Design Tools - Introduction Page 34

Introduction

al

These typically fall into two categories:

Potential Blockers — Issues that would prevent people with
disabilities from completing tasks or accessing key content. For
example, if keyboard-only users cannot activate or reach a feature,
the task becomes fundamentally inaccessible. These must be
resolved before development to avoid creating inaccessible
features.

Potential Barriers — These refer to accessibility violations but
could be confused with usability concerns that may make it difficult
or inefficient for users with disabilities to understand or complete
tasks. For instance, if screen reader users cannot locate key
information due to missing landmarks or inconsistent headings, they
may become disoriented or give up. Beyond usability or clarity
issues, these may hinder, confuse, or slow down users with
disabilities. These are important to address but may be prioritized
differently or planned for future releases.

The goal of this reviewed status is to inform all stakeholders, which include
product managers, developers, and testers, about where accessibility risks
exist so that mitigation strategies can be planned. It also supports shared
accountability by aligning expectations and enabling informed decisions
about what to fix now and what to log for future releases.

“The clarity it provides helps identify many
violations. Its impact is like a domino effect—one
finding can prevent a chain of accessibility
issues and save significant time and effort.”

Sanket Kundu - UX Design Associate

Accessibility Design Tools - Introduction Page 35

=
.2
)
(18]
©
=
>
O
L

Foundation

Imagine a developer who does not just implement designs,
but enables access. Each design specification is not just
layout. It is a set of cues for people navigating by touch, voice,
keyboard, or screen reader. Build it like someone depends on
it, because someone does.

This chapter helps designers to connect design and development.

Inclusive Designh Foundation

Meeting the needs of developers to code a fully accessible experience

If you want to create a culture of accessibility for designers, aim to foster
the mindset of accessibility by providing a source of truth for designers to
reference components used on the designs. One of the main benefits
associated with this strategy is that Designers will trust accessibility is
considered in the foundational controls used by developers.

Another benefit is the developer confidence during implementation as
they will use known controls to create the accessible experiences. Lastly,
users will explore and interact more confidently, knowing they can trust
patterns and consistent behaviors across the product.

If you have started an annotation effort in your group, you may have
discovered the importance of having one source of truth for designers and
developers to follow. Strategic design starts from the base where
annotated components are part of a reusable library of components.

The best practices presented in this section focus on basic information to
build consistent interaction and navigation styles. The annotation proposed
provide basic understanding of the layout and flow.

Accessibility Design Tools - Foundation Page 36

=
.2
)
(18]
©
=
>
O
L

Principles

Designer

Persona: Dan

“I create the design specification using SAP
Design Tools for Accessibility to give a solid
basis for an accessibility-ready
implementation”

The designer role prepares the specification to bridge the gap between
creative vision and engineering. The selection of page templates and Ul
elements on the design are precisely informed to articulate the vision of
designers and enable developers to implement the intended experience.

General Design Tips

1. Make clear component definitions

Ambiguity in component naming or mismatches between design libraries
and code libraries can lead to rework or inaccessible implementations.

Design Tips: Use consistent annotation naming conventions for all
components (e.g., Button, Dialog, Table Row). Reference design system
tokens and document expected behaviors clearly.

2. Use reusable layout structures (floorplans)

Developers waste time reinterpreting layouts when reusable page
structures (e.g., navigation, headers, footers) are not identified.

Design Tips: Annotate floorplan names in design specs. Add labelled ARIA
landmark annotations (e.g., main, navigation, banner) to simplify
implementation and improve accessibility (see chapter Screen Reading
Experience)

Accessibility Design Tools - Foundation Page 37

=
.2
)
(18]
©
=
>
O
L

3. Work with annotation checklists

The Checklist component offers two complementary formats that
designers can choose from depending on their workflow and purpose.

Design Tips: Use one of the proposed checklists to create the accessibility
specification, the unified checklist or the group of specialized checklists.

Annotation Checklists

You can choose to use individual checklists or a complete cheat sheet,
during design specification or during the design review.

1. Unified Checklist (Single-Sheet Overview)

e Aconsolidated, one-page resource that merges the six focus areas,
Foundation, Visual, Screen Reading, Cognitive, Interaction, and
Auditory, into a single overview sheet.

e Best suited for design reviews, where a quick but comprehensive
scan of accessibility considerations is needed.

¢ Includes mobile-specific exceptions directly within the sheet,
making it easier to spot issues across platforms.

2. Specialized Checklists (Contextualized Sets)

e Six dedicated checklists, each focusing on one accessibility area:
Foundation, Visual, Screen Reading, Cognitive, Interaction, and
Auditory.

e Designed for deep-dive evaluations or when working on a design
specification document, where detailed consideration of a
particular aspect is required.

e Enables designers to focus on the nuances of each accessibility
dimension, supporting more thorough documentation.

By consolidating accessibility concerns into one list, teams can quickly
spot potential issues, maintain consistency across projects, and avoid
overlooking key requirements.

This approach not only streamlines the review process but also helps
designers build habits of inclusive thinking, ensuring that accessibility is
embedded into the workflow rather than treated as an afterthought.

Ultimately, checklists make it easier to produce designs that are more
usable, more compliant, and more welcoming to all users.

Accessibility Design Tools - Foundation Page 38

=
.2
)
(18]
©
=
>
O
L

®

Accessibility Checklists

Create and document the inclusive experience using these
requirements. Each item contains one or more annotations to

address the topic in your design specification.

Foundation

Visual Experience

Mobile Exception

Tooltips accessible via “Long Press”
Text resize based on slider
Reflow addresses landscape orientation

Interactive Experience

Mobile Exception

Screen Reading Experience

Maobile Exception

Page title is identical to page header
One Heading level only

Tooltips accessible via “Long Press”
Landmarks doesn't apply

Cognitive Experience

Hard of Hearing Experience

[m]
[m]
[m]
o
[m]
o
[m]
o
=]
[m]

fom I o I e B s R e s R

Component Name
Floorplan Name
Design Note

Color Contrast
Themes
Responsiveness
Text Resizing
Text Spacing
Tooltip

Input Mechanisms
Focus Order

Initial Focus Position
Focus Restore
Skipping Groups
Shortcuts

Trigger

Motion Alternative
Minimum Target Size
Journey

Reading order
Label

Description

Live Message
Headings
Landmark

Page title

Role and properties
Speech output
Audio Control
Audio Description
Language

Wayfinding and orientation
Semantic

Error Handling

Motion content

Time limit

Multiple Ways

Redundant Entries

Captions
Transcripts

Foundation

O component Name
O Floorplan Name
O Design Note

Visual Experience

O Color Contrast
O Theme

O Responsiveness
O Text Resizing

0O Text Spacing

O Tooltip

Interactive Experience

O Input Mechanism O Shorteut

O Focus Order 0O Trigger

O Initial Focus Position O Motion Alternative
O Focus Restore O Minimum Target Size
O skipping Group 0O Journey

Screen Reading Experience

O Reading Order 0O Page Title

0O Label O Role and Properties
O Description O Speech Output

O Live Message O Audio Control

O Heading O Audio Description
O Landmark O Language

Cognitive Experience

O Wayfinding and Orientation
O Semantic Strategy

3 Error Handling

O Motion Content

O Time Limit

O Multiple Ways

O Redundant Entry

Auditory Experience

O Caption
O Transcript

Figure 5: Checklists, which include foundation and one for each of the five
groups of people with disabilities, are used to guide designers during the
annotation phase or during the design review

Accessibility Design Tools - Foundation Page 39

=
.2
)
(18]
©
=
>
O
L

Developer

Persona: Denise

“I consult the accessibility specifications in
a design to implement the end user
experience free of accessibility defects.”

The developer role goes far beyond typing lines of code. They bridge the
gap between creative vision and real-world use, ensuring every user,
regardless of ability, can enjoy a seamless experience. You are the architect
of accessibility, translating the vision of the designer into a living, breathing
application that welcomes everyone.

Design & Development Collaboration

Design and development collaboration begins with a shared language that
includes component names, floorplan names, and external content
annotations. These are basic elements defining the design blueprint for
consistency and clarity. These foundational elements are not mere labels;
they are the guiding framework that ensures every part of the app fits
perfectly within the larger structure, bridging creative ideas and technical
implementation.

It is also the key task of designers and developers to deeply understand
the shared accessibility language. The accessibility annotations function
like the architecture of the application, pointing precisely to where every
piece fits and should be configured, ensuring usable and inclusive flows,
consistency and clarity across the entire digital landscape.

When designers specify components with exact names and link them to
floorplans, the reusable page structures, they provide developers with a
powerful map. This map guides the implementation, allowing the
developer to connect the dots between design intent and code reality
without guesswork.

External content annotations point to third-party elements that fall outside
your direct control but still affect the user experience: embedded widgets,
external libraries, or API-driven content. While the developer may not
manage how these elements are built, they are still responsible for

Accessibility Design Tools - Foundation Page 40

=
.2
)
(18]
©
=
>
O
L

understanding their behavior, ensuring the elements integrate smoothly,
and flagging any accessibility risks they introduce.

Prepare the code for testing

But your work as a developer does not stop at translating designs into
code. Preparing the app for testing is where your craftsmanship truly
shines. By embedding semantic HTML, following ARIA standards, and
ensuring proper landmarks and roles, you lay the groundwork for assistive
technologies to interpret and interact with your app flawlessly. You are
crafting invisible threads that empower screen readers, keyboard
navigation, and other assistive tools to deliver a coherent story to every
user.

Collaborating closely with designers to clarify annotations and accessibility
For Developers means fewer surprises during testing and smoother
certification processes overall.

Ultimately, your role is that of an accessibility steward, ensuring that the
architecture of the app is both robust and flexible; ready to welcome
diverse users without compromise.

The foundation you help build today, with meticulous attention to design
alignment and accessibility compliance, becomes the launching pad for
inclusive digital experiences that do not just meet standards, but genuinely
open doors. In this dance of design and development, your expertise turns
vision into vibrant reality, one accessible component at a time.

Accessibility Design Tools - Foundation Page 41

=
.2
)
(18]
©
=
>
O
L

General Development Tips

When you encounter accessibility annotations in a design:
1. Identify the Annotations

e Find the annotations in the respective subchapters of this
documentation

2. Understand the Use Cases

e Review all use cases (or user stories) and all additional linked
information for your designs.

e Examine the documentation and examples
3. Implement According to Best Practices

e Clarify missing edge cases in design.

¢ Find extra implementation information in the “For Developers”
annotation subchapters

e Consult developer documentation for respective technology about
implementation methods and examples in the “For Developers”
annotation subchapters

4. Iterate on your Work

e Showcase proof of concept samples to designers
e Align and harmonize expectations

e Contact subject matter experts for open questions

Accessibility Design Tools - Foundation Page 42

Annotations

Foundation Annotations

=
.2
)
(18]
©
=
>
O
L

The checklist helps designers remember aspects that need to be
addressed during the design phase. Foundation annotations help
designers make thoughtful choices about components, page templates,
layouts, flow, and navigation. They also clearly communicate these
decisions to developers, ensuring the designed experience meets the
needs of all users.

Foundation

(O Component Name
(O Floorplan Name
(O Design Note

Accessibility Design Tools - Foundation Page 43

=
.2
)
(18]
©
=
>
O
L

Component Name

Identify the connection between the design component and the control
used for implementation that is aligned with developers to ensure an
efficient development process.

Component Variants

Component Name

& Component: name

Figure 6: Indicates the name of a component used on the layout

Component Name (Scope)

€ Component: name

Figure 7: Indicates the name of a component used on the layout with a visual
outline of its limits

Component Name (External)

(2 External Component: name

Figure 8: Informs that an external component or app is used in the layout
About Component Name

Components that have the same functionality within a set of web pages
must be identified consistently.

WCAG 3.2.4 Consistent Identification requires that components with the
same functionality are identified consistently across a product or set of
pages. This means using the same visual symbols, labels, or roles for
elements that perform the same action, such as a “Search” icon or a
“Submit” button. Consistency supports recognition, reduces cognitive load,
and helps all users, especially those with cognitive or visual disabilities,
navigate interfaces more easily and predictably. It is a key principle in
building intuitive, inclusive user experiences.

Naming components in the design according to shared component and
control libraries is the first step to provide precision and remove doubts
from design intention. Mapping design component and floorplans to their

Accessibility Design Tools - Foundation Page 44

=
.2
)
(18]
©
=
>
O
L

technical Ul library used for implementation is the best way to
communicate the design construct.

Component Name and Component Name (Scope)

The Component Name annotation identifies the Ul element in the design
and maps it to a corresponding component in the technical Ul library used
for implementation. Indicate components by pointing to them or framing its
area using the scope annotation.

This ensures developers understand which component to reference, even if
the visual design combines multiple Ul patterns. This also prevents
ambiguity during handoff and improves alignment between design intent
and implementation.

¢ Note: The component name may differ from the internal name used in
the design tool. If this happens align with development and design
systems to document deviations.

Component Name (External)

Use the Component Name (External) variant when the design includes
elements outside the immediate control of the product team. These may
come from a third-party source, external design system, or API-based
widget.

When to use:

e Embedded 3rd-party components (e.g., a chatbot, calendar picker,
video player).

e Shared components not owned by your team but consumed via the Ul
framework.

Accessibility Notes: Any accessibility issue must be addressed at the
source to allow your product to rely on how the external content is
structured and coded.

Table 6: Component annotation types

Annotation Type Purpose Accessibility Relevance

Component Name and Identify Ul elements and | Helps developers apply
Component Name their matching correct semantics and
(Scope) components in the interactive roles
implementation library

Accessibility Design Tools - Foundation Page 45

Component Name Annotate 3rd-party or
(External) non-owned elements
embedded in the design

=
.2
)
(18]
©
=
>
O
L

Examples

& Component Dialog

My Profile e

Name *

Raul Sanchez 4 Component: Input
& C

Profession *

Blogger M % Component: Combo Box

Coaching Style

P 4 component: HTML Viewer
() Vision

:* Holistic Traditional coaching approach focused not

— . L L (7, External Component: Coach Junion Source
() Transformational

quality of presence and awareness during
. the process.
. Mindful R

€ Component: RadioList
Save (o= IME 2 Component: Button

& Component: Button

Figure 9: Component, Component (Source) and Component (External)
annotations used in a dialog design

Accessibility Design Tools - Foundation Page 46

For Developers

Developers should check, during the review process, if the names used in
Component Name reflect existing component names in the development
framework inventories used for implementing the design.

=
.2
)
(18]
©
=
>
O
L

They should also verify if the usage of components in the design correctly
reflects all features of the respective framework components since
component feature changes (such as interface and functionality
modifications) could have been sometimes made without informing the
designers.

References

WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

3.2.4 Consistent Identification (AA)

5.4 Statement of Partial Conformance - Third Party Content

Accessibility Design Tools - Foundation Page 47

https://www.w3.org/TR/WCAG22/#info-and-relationships
https://www.w3.org/TR/WCAG22/#consistent-identification
https://www.w3.org/TR/WCAG22/#conformance-partial

=
.2
)
(18]
©
=
>
O
L

Floorplan Name

Indicate the name of a page floorplan template

Component Variants

Floorplan Name

Page Template (Floorplan):
name

Figure 10: Indicates the name of a page template used to create a new page
layout

About Floorplan Name

The Floorplan Name annotation identifies a reusable page-level layout or
structure, such as templates that include headers, footers, menus,
breadcrumbs, or other navigational elements. It serves as a reference to
standard page templates defined in the design system or framework and
helps ensure consistency across screens.

Why It Matters

¢ Design Consistency: Using named floorplans encourages the reuse of
familiar patterns, streamlining both design and development.

e Clarity in Handoff: Clear naming reduces ambiguity for developers and
content creators, enabling accurate implementation of page structures.

¢ Efficiency: Annotating with Floorplan Names saves time by eliminating
the need to redefine structure or behavior for every page.

Accessibility Relevance

Floorplan annotations are especially critical for accessibility. They help
ensure:

e Consistent Landmarks: Reusable templates can define key landmark
regions such as main, banner, navigation, and content info (footer),
making navigation easier for screen reader users.

e Structured Headings: Templates often dictate where <h1> and other
headings should appear, supporting a logical and predictable heading
hierarchy.

e Labeling of Repeating Elements: Floorplans can include labels for
repeating regions, improving clarity and orientation within complex

pages.

Accessibility Design Tools - Foundation Page 48

Inclusive Design Benefits

Standardizing floorplan names across the design process helps ensure that
accessibility best practices are not applied ad hoc. Without this structure:

=
.2
)
(18]
©
=
>
O
L

e Heading levels may be inconsistent.
e Landmark roles could be missed or misused.
¢ Navigational regions could appear unpredictably across screens.

By naming and referencing floorplans clearly, teams reinforce semantic
consistency and help assistive technologies interpret content more
effectively, thereby creating a more inclusive user experience.

Examples

Page Template (Floorplan):
SignUp

:Litebeccr About Features Pricing Gallery - Team |j Q

Sign In

Brighten up your home with the perfect Join Us!
lighting! Sign up now for exclusive 2
deals, expert tips, and the latest

designs to illuminate your space. e el =

Figure 11: Floorplan name annotation used to identify a Sign-Up page
floorplan from design and framework inventories

Accessibility Design Tools - Foundation Page 49

Page Template (Floorplan)
HomePage

=

Apout Features Pricing Gallery- Team

=
.2
)
(18]
©
=
>
O
L

Figure 12: Floorplan name annotation used to identify a home page floorplan
from design and framework inventories
For Developers

Once designers create accessibility-focused design specs, developers
should review them before implementation. This review ensures that
annotations, focus order, interaction behaviors, and semantic elements are
clearly documented and feasible to implement.

By checking the specs early, developers can flag potential issues, suggest
improvements, and align on technical constraints, helping the team deliver
accessible and usable products efficiently.

References

WCAG 2.2 Reference

3.2.3 Consistent Navigation (AA)

Accessibility Design Tools - Foundation Page 50

https://www.w3.org/TR/WCAG22/#consistent-navigation

=
.2
)
(18]
©
=
>
O
L

Design Note

Add information for alignment with others to complete your design

The set of annotations proposed in the document will help designers
clarify how the accessible experience has been addressed during the
design phase. But as presented in the introduction chapter, not all WCAG
success criteria are covered.

Component Variants

Design Note

This is a note

More details about this note

Figure 13: Alignments with other stakeholders may result in added details to
the design specification. Use a Design Note to inform consumers of the
specification about such details.

About Design Note

There are also edge cases not addressed in this guide which may become
critical to delivering a fully accessible experience. Sometimes these
scenarios can be solved with user research; other times, it requires
alignment with engineers to discuss technical challenges. The results of
such strategies may require a more elaborated explanation of a design
decision that affects accessibility.

For this, you may find the Design Note annotation helpful to elaborate
scenarios of the Visual Design experience, Screen Reading experience,
Interactive and Cognitive experience. The annotation is intended to inform
developers about something that should be considered during
development that cannot be informed using existing annotations. Use the
note when discussing design details during design reviews that are worth
mentioning to developers. It can also be used to indicate user research
results that would be available to all stakeholders. It is helpful to
summarize the result of long comment threads in Figma with various
stakeholders in the design note. As a result, the decision is also available
for anyone who may have access to the document but not to resolved
comments.

The design note annotation is also useful for supporting informal design
reviews.

Accessibility Design Tools - Foundation Page 51

Examples

‘ Dec 05, 2019 &9 ‘ < Component: DatePicker

R National Day of Remembrance in Canada

!

Event API availability

=
.2
)
(18]
©
=
>
O
L

This information will only be used on modules
prepared to use the API.

Figure 14: Design note used to indicate dynamic information under an input
field that will be handled by and API event

Dec 05, 2019 -

< December 2019 ‘ >

Component navigation

The navigation within this component is explained
Sun Mon Tue Wed Thu Fri Sat in the Components Design Library

22 28 29 30 31 1 2 g8

23 41516 7 8 9 10 € Component Calendar

24 WA 12 13 14 15 16

25 EiSy 19 20 21 22 23 F

26 p2SN 26 27 28 29 30 1

Figure 15: Design note used to indicate that component navigation and
exploration is explained in the library of components

Accessibility Design Tools - Foundation Page 52

For Developers

Developers should review all provided annotations and pay close attention
to Design Notes.

=
.2
)
(18]
©
=
>
O
L

These notes often include recommendations for meeting accessibility
requirements or guidance on implementing inclusive experiences,
highlighting areas where code needs to be handled with extra care.

References

(no references)

“The Accessibility Design Tools have significantly
boosted my productivity by streamlining how |
identify and address accessibility needs early in
the design process - saving time, reducing rework,
and helping me deliver more inclusive solutions
with greater efficiency.”

Hanna Klymenko — Product Design Expert

Accessibility Design Tools - Foundation Page 53

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Visual Experience

Imagine looking at a screen where the text is clear and easy to
read, and important information stands out. What turns visual
content into a clear, comfortable experience? The answer is
visual content that allows all users to perceive and
understand information clearly, regardless of their visual
abilities or viewing conditions.

This chapter shows designers how to create perceivable designs that provide an
inclusive experience for everyone, especially people with visual disabilities.

The Inclusive Visual Experience

Design your application and Ul components with clear, legible, and
comfortable visuals that everyone can perceive.

This supports users with visual impairments by enhancing clarity and
reducing cognitive load. An inclusive visual design benefits everyone, from
those using devices in bright sunlight to anyone who needs a more
readable interface.

Sufficient color contrast ensures text and interactive elements are
distinguishable for all users. Theme options like light, dark, and high
contrast give users essential control over their visual experience. While
critical for those with visual impairments, these choices also help people
with sensory sensitivities. Text resizing and adjustable spacing enable users
with visual or cognitive disabilities to follow lines of text more easily.

Communicate information through multiple methods, such as
supplementing color with text labels or icons and using tooltips to clarify
purpose. This approach helps critical information reach all users,
regardless of how they perceive visual content.

Accessibility Design Tools - Visual Experience Page 54

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Principles

Visual Impairment

Persona: Victoria

“I'm color blind, have myopia and I'm
sensitive to light. | use a screen magnifier,
and screen reading at times. It’s a challenge
to identify object contours, distinguish
certain colors and interpret information
effectively. Theming provides appropriate
screen contrast.”

There are degrees of vision impairment that people may experience. This
can range from mild vision loss through various levels of reduced visual
ability, including difficulty perceiving details, light, or movement.

Permanent: Conditions such as color blindness, astigmatism, long-
sightedness. Low vision can happen due to diabetes, retinopathy, macular
degeneration, retinitis pigmentosa, glaucoma, and cataracts.

The persona above, Victoria, represents individuals with color blindness,
myopia, low vision, light sensitivity, and other conditions that limit or hinder
the visibility of digital products presented in digital screens (tunnel vision
or peripheral field loss, central vision loss, floaters and obstructions,
double vision or diplopia, visual field distortions).

According to the World Health Organization (WHO), 2.2 billion people
globally have a visual impairment. Therefore, visibility, a fundamental
principle in design, must be addressed with care to support those
experiencing visual impairments in perceiving information and conducting
tasks.?

Some statistics:

e About 2.2 billion people worldwide have some form of vision
impairment or blindness (World Health Organization, 2023)2°

e Approximately 217 million people have moderate to severe vision
impairment, meaning they can see but often need aids such as
maghnifiers, enhanced contrast, or larger text.’

Accessibility Design Tools - Visual Experience Page 55

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

e Color vision deficiency affects millions of people across all regions and
communities. Based on prevalence rates (~8% of men, ~0.5% of
women), this amounts to about 300 million people globally.**

¢ Vision impairments increase with age; age-related macular degeneration
(AMD) affects millions of adults aged 50 and older worldwide. In 2021,
about 8 million people, roughly 1 in every 1,000 adults globally,
experienced vision loss, making even simple, daily tasks a challenge.®

Situational and Temporary Disabilites

Accounting for situational and temporary disabilities enables design teams
to address challenges that may not be permanent but still impact user
experience under certain conditions, such as:

e Glare sensitivity in bright light: This could make it hard for users to see
screens or navigate in certain lighting conditions (e.g., outdoors in
daylight, or in fluorescent lighting).

e Short-sightedness (not wearing corrective lenses): A person may struggle
with vision if they forget, cannot access, or even have broken their
glasses or contacts.

e Fatigue-induced vision challenges such as extended screen time may
worsen vision temporarily.

Accessibility Design Tools - Visual Experience Page 56

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

General Design Tips

1.

Adjustable Text and Element Size (Text Resizing):
When text or interface elements are too small or cannot be adjusted
users may have difficulty reading them and using them effectively.

Design Tip: Support scalable text and Ul components without breaking
layouts. Ensure resizing is smooth without content overlap or truncation.

. High Contrast and Clear Visual Separation (Color Contrast):

Low contrast reduces the ability for users to distinguish interface
elements and text.

Design Tip: Use high contrast color schemes and ensure sufficient
contrast ratios for text and key Ul elements. Avoid relying on color alone
to convey information.

. Simplified and Responsive Layouts (Responsiveness):

Wide or cluttered layouts can be difficult to navigate for users with
reduced visual fields or those using maghnification.

Design Tip: Design flexible and well-structured layouts that adapt well
to smaller or magnified viewports, minimizing horizontal scrolling and
preserving hierarchy.

. Support for Zoom and Maghification (Responsiveness):

Users who rely on zooming or magnification tools may encounter
distorted or broken interfaces if designs are not flexible and well-
structured.

Design Tip: Test designs at various zoom levels to ensure text
readability and interface element functionality remain intact.

Support Multiple Themes (Theme):
Designs that only work in a single-color scheme can limit accessibility
and personalization.

Design Tip: Design with flexibility for light, dark, and high contrast
themes. Ensure brand colors adapt and maintain contrast requirements
across all modes.

Consistent Text Spacing (Text Spacing):

Fixed text spacing can make it difficult for users with cognitive

Accessibility Design Tools - Visual Experience Page 57

disabilities such as dyslexia to read text effectively.

Design Tip: Allow line height, letter spacing, and word spacing to adjust
without cutting off text or breaking layouts. Ensure readability when
users apply custom spacing settings.

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

7. Accessible Tooltips (Tooltip):
Minimal or icon-only designs can leave sighted users uncertain about
meaning or function. Tooltips help provide clarity on mouse hover and
keyboard focus - covering the needs of those with limited mobility who
cannot perform precise pointer actions.

b Use tooltips to clarify the meaning of icons or complex actions for
sighted users. Ensure they can be activated and dismissed with both
mouse and keyboard and remain visible long enough to be read
comfortably by the user. Never rely on tooltips as the only way to
convey critical information—always provide context in text or labels as
well.

Accessibility Design Tools - Visual Experience Page 58

Annotations

Visual Experience Annotations

This checklist helps designers remember key accessibility aspects that
need to be addressed during the design phase.

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

The visual experience scope helps designers check color contrast, ensure
theming works, validate semantics, and address truncation or wrapping
through simulations for reflow, responsiveness, text resizing, and text
spacing.

The visual experience category also incorporates visual tooltips which
should be used according to best practices for labelling components.

Visual Experience Checklist

Color Contrast
Theme
Responsiveness
Text Resize

Text Spacing
Tooltip

000000

Accessibility Design Tools - Visual Experience Page 59

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Color Contrast

Describe the color contrast values used in your design.

Component Variants
Color Contrast on Standard Theme

Mandatory Exception

q 1 — q :1 NonText ——

Figure 16: The color contrast annotations 4.5:1 (for text) and 3.1 (for non-text
elements) indicate that each chosen color meets the minimum color contrast
requirements with its background

Color Contrast on High Contrast Theme

Mandatory

Figure 17: The color contrast annotation 7:1 indicates that the chosen color
meets the minimum color contrast requirements with its background

About Color Contrast

Color contrast is the contrast ratio between two values, foreground and
background color. It is mandatory for any Ul element conveying relevant
information to meet the minimum contrast ratio. It applies to text and
graphical elements, such as controls and icons.

Accessibility Design Tools - Visual Experience Page 60

Color Contrast Requirements

Ensure a minimum contrast ratio of 4.5:1 for all text (including hover, focus,
and active states), placeholders, icons, and images of text. This standard
guarantee readability and supports users with low vision or contrast
sensitivity.

The following cases require a sufficient color contrast:

Buu@;
O

Figure 18: Text in hover state of a button

Q<

Figure 19: Icons

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

New Messages

Figure 20: Images of text

Color Contrast Exemptions

Certain elements are exempt from contrast requirements: disabled
controls, purely decorative borders or patterns, and non-informative
graphics such as illustrations, photographs, and logos. While exempt,
designers should still aim for clarity whenever possible.

The following cases are exemptions:

Checkbox label

Figure 21: Disabled controls

Accessibility Design Tools - Visual Experience Page 61

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Figure 23: Illustrations, photographs and logos

High contrast theming aims to meet 7:1 color contrast by default, with a
minimum of 4.5:1 for exceptions. Users with low vision, particularly those
working in bright conditions, use this theming to compensate for moderate
visual challenges such as floaters, cloudy vision, or early macular
degeneration. This helps them work more efficiently and without
exhaustion.

Use the mandatory color contrast ratio of 4.5:1 (or 7:1 for high contrast
theming) or higher whenever possible. If this is not possible, check if the
element qualifies as an exception or exemption. Use a minimum contrast of
3:1 for object borders of Ul elements.

Examples

Font Size and Icons in Reference to Color Contrast

s 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
e 8 8 0 65 00 BB B0 BH &

Figure 24: Large text definition starts at 14 pt or larger when bold or regular
18 pt text or larger when not bold

The same color contrast rule applies to icons. Aim for a minimum contrast
ratio of 4.5:1 on the default theme. For large text, an exception allows a
minimum contrast of is 3:1 on the default theme.

Accessibility Design Tools - Visual Experience Page 62

Label Label

x o—— Non-Text q :1 J ‘ F Non-Text d 11

Figure 25: Meaningful non-text elements, such as an input field, require a
contrast ratio of at least 3:1 against the background

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

v Selected (Unselected)

Figure 26: The visual presentation of text must have a contrast ratio of at least 4.5:1.
Text within an inactive user interface is exempt from this contrast requirement.

January 2022

Figure 27: In high contrast themes, text must have a contrast ratio of at least
7:1.

Shared Benefits

Temporary Disabilities

All users

Accessibility Design Tools - Visual Experience Page 63

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

A sufficient color contrast benefits more than just users with low vision.
Individuals vary greatly in their ability to perceive color and contrast.
Environmental factors, such as intense sunlight shining on a display, can
make it difficult to read content.

Limited Cognition

b Cognitive

For some users with cognitive disabilities, sufficient color contrast is crucial.
Conditions that affect the ability to process information visually benefit
from improved readability and clarity. Choosing colors that can be easily
perceived can also reduce stress and cognitive load.

For Developers

Developers should check during the implementation if foreground and
background color values for all user interface component parts in their
frameworks meet the required contrast ratios for the default theme.

References

WCAG 2.2

1.4.1 Use of Color (A)

1.4.3 Contrast (Minimum) (AA)

1.4.11 Non-text Contrast (AA)

Accessibility Design Tools - Visual Experience Page 64

https://www.w3.org/TR/WCAG22/#use-of-color
https://www.w3.org/TR/WCAG22/#contrast-minimum
https://www.w3.org/TR/WCAG22/#non-text-contrast

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Theme

Ensure your designs account for both light and dark contrast themes and
include high contrast themes in your designs.

Component Variants

Theme

Figure 28: This annotation is used to draw a parallel between a screen
designed for the standard theme and its corresponding version in the high
contrast theme.

About Theme

The annotation featured above illustrates the relationship between a
screen designed in the standard theme and its counterpart in high contrast,
which is available as an optional setting.

Both standard and high contrast themes must be addressed in the design.

Reduce color saturation and avoid or limit pure white and black colors.
When using pure black (#000) as a background for dark mode, the text and
content can be slightly dimmed to reduce eye bleed due to extreme
contrast.

If possible, design the light mode version first and ensure all visual
elements and cues are preserved when creating the dark mode version.
Maintain the colors in dark mode and adjust them as needed within the
theme implementation to ensure the intended design remains clear and
effective.

Plugins to help adjust colors:

e Appearance (Figma plugin).
e Dark mode magic (Figma plugin).
e Camilo (Sketch plugin).

Keep consistency in mind by applying the color guidance of your design
system.

Accessibility Design Tools - Visual Experience Page 65

https://www.figma.com/community/plugin/760927481606931799/appearance
https://www.figma.com/community/plugin/834062945643616879/dark-mode-magic
https://medium.com/makingtuenti/camilo-our-tool-and-technique-for-one-click-brand-change-in-sketch-52-2060ae4161ae

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

An application should have a color contrast setting control for users who
wish to alternate themes. The setting offers the option to switch from a
default light theming contrast ratio of 4.5:1 to a high contrast theming,
respecting the 7:1 contrast ratio.

Examples

@
5

& Purchase Track

2 Purchase Track

4 This app will update in 5 minutes. Pestpone 1 hour

& Touchpoints will refresh in 5 minutes.

Touchpoints @
" Stop)
o 23 Connnecting touchpoints
c s e
Facebook v
L v

Figure 29: This theme annotation is used to show a parallel between a screen
designed for the standard theme and its corresponding screen designed in
the high contrast theme.

Shared Benefits

Temporary Disabilities

All users

Themes also support users with temporary disabilities such as an eye
strain or an injury. Switching themes for better contrast, reduced glare, or
easier readability can ensure the usage is more comfortable until recovery.
High contrast themes are not limited to specific user groups; people
without disabilities may also prefer more visually distinct interfaces and
find them easier to read or navigate.

Accessibility Design Tools - Visual Experience Page 66

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Limited Cognition

Cognitive

Themes like high contrast primarily support users with visual impairments
but can also be beneficial for users with cognitive disabilities. This affects,
for example, people who struggle with focusing on tasks due to sensory
sensitivities. However, it is crucial to understand that preferences will vary,
and some users with cognitive disabilities may prefer a lighter color
scheme over high contrast.

For Developers
Developers should verify during the implementation if they:

e provide end users multiple themes as part of the Ul framework, one of
them being a theme with 4.5:1 contrast ratio support and another with
7:1 high contrast support.

e provide an option for end users to switch between these themes.

If no theme configuration is provided as part of the Ul framework, a fallback
must exist that allows users to apply different OS themes on the platform,
while still complying with the given requirements.

References

WCAG 2.2

1.4.1 Use of Color (A)

1.4.11 Non-text Contrast (AA)

Accessibility Design Tools - Visual Experience Page 67

https://www.w3.org/TR/WCAG22/#use-of-color
https://www.w3.org/TR/WCAG22/#non-text-contrast

Responsiveness

Design the layout so that Ul elements are reorganized dynamically,
adjusting and responding to different device orientations and screen sizes.

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Component Variants

Screen Resize

Web - Tablet - Mobile

Screen Resize Device Simulation

Figure 30: Simulate a web screen seen from a mobile device or tablet to
ensure content visibility is preserved.

Orientation

Orientation

[J Landscape
320h 256w

Orientation

L] Portrait
256 h 320 w

Figure 31: Simulate the mobile layout orientation to explore how content
adjusts to portrait and landscape orientations.

Accessibility Design Tools - Visual Experience Page 68

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Content Visibility

Content Visibility Truncation

Interaction required to reveal full content

Use Button or Link for progressive disclosure. Tooltip -
available on focus - is optional.

Content Visibility Wrapping |=|

No interaction required

Content uses as many lines as needed.

Figure 32: Provide instructions on how to address content visibility issues by
proposing truncation or wrapping.

About Responsiveness

Prepare your designs to simulate how layouts and content behave across
different screen sizes and orientations, including web, tablet, and mobile.
The Screen Size Reflow and Orientation annotations help designers ensure
the user interface adapts correctly and remains usable across devices.

This design consideration is supported by two WCAG requirements. The
1.3.4 Orientation (AA) requires that content remains fully operable and
understandable in both portrait and landscape modes (or any orientation),
unless a specific orientation is essential for the functionality. This ensures
that users can maintain consistent spatial cues and mental maps as they
switch between device orientations, preventing disorientation and
supporting a stable navigation experience.

The 1.4.10 Reflow (AA) requires that content can be presented without loss
of information or functionality, and without the need for two-dimensional
scrolling (both horizontal and vertical). This ensures that users who need to
enlarge text or content, can still follow the layout and understand the page
structure without excessive scrolling. This supports continuity, helps users
keep their place, and reduces cognitive load during navigation.

Screen Resize

Use the screen size reflow annotation to show how the layout and content
adapt when the viewport changes, for example when resizing a web
browser or adjusting a design for tablet and mobile screens.

Purpose: This annotation ensures that the Ul is responsive and that it
maintains usability and content clarity across a wide range of screen sizes.
It focuses on layout reflow, element wrapping, and content scaling during
viewport resizing.

What to Specify:

Accessibility Design Tools - Visual Experience Page 69

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Reflow Behavior: Describe how content and layout adapt when
transitioning from large to smaller screens (e.g., multi-column to single
column).

Element Wrapping or Truncation: Indicate which elements are allowed to
wrap and which should truncate, following design system guidance.
Minimum Supported Size: Ensure the design supports on desktop a
width of 320 CSS px for vertical scrolling content and a height of 256
CSS px for horizontal scrolling content.

No 2D Scrolling: Confirm that content does not require horizontal
scrolling in addition to vertical scrolling, unless it is essential (e.g., data
tables, maps).

Zoom and Resize Compatibility: Ensure designs remain operable at
200% zoom.

Why it Matters:

Supports accessibility and flexible usage across devices.

Improves design handoff clarity for developers implementing
responsive behavior.

Helps users who rely on zooming, screen magnifiers, and custom device
settings.

Orientation (Mobile/Tablet)

Use the orientation annotation to define how the design behaves in portrait
vs. landscape orientations, particularly on mobile and tablet devices.

Purpose: This annotation ensures that the design is not restricted to a
single orientation unless necessary, and that it works reliably in both
modes.

What to Specify:

Support for Both Orientations: Indicate whether the interface adapts
properly in portrait and landscape modes without loss of content or
functionality.

Layout Adjustments: Note any key layout shifts (e.g., navigation bar
repositioning or text scaling) that occur between orientations.

Essential Orientation: If one orientation is required for a functional
reason, clearly document it as a design note (e.g., landscape-only video
editing tool).

Minimum Size Support: As with reflow, verify that orientation changes do
not reduce the layout below accessibility thresholds of 320x256 CSS
pixels, depending on the mode.

Accessibility Design Tools - Visual Experience Page 70

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

¢ No Content Lockout: Ensure users are not blocked from accessing key
functions based on how they hold the device.

Why it Matters:

¢ Orientation flexibility accommodates users with different device
preferences and physical needs.
e Prevents critical functionality and content from becoming inaccessible in

any orientation, not just the preferred mode.

e Aligns with WCAG requirements and inclusive design standards,
especially for mobile-first experiences.

The takeaway of this chapter is: Prepare your screens to support content
and layout adjustments for smaller screens. This requires careful attention
to layout adjustments, content reorganization, and decisions about

wrapping or truncation.

Table 7: Comparison of responsiveness annotation variants

Annotations

Focus

Consideration

Screen Size Reflow

From large to small
screens

Reflow logic,
wrapping/truncation,
zoom, 2D scroll
prevention, min size
support

Orientation

Portrait vs. Landscape
modes

Mode adaptability,
layout shifts,
restrictions, functional
requirements

Accessibility Design Tools - Visual Experience

Page 71

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Content Visibility

Loss of visibility is a violation of WCAG 1.4.4. Text Resize. When content
needs to adjust to different screen sizes, the design should plan for
potential content visibility issues. These can be addressed with truncation
or wrapping.

Wrapping

This is the simplest solution to guarantee full content remains visible when
a layout adjusts to text resizing, but also text spacing and responsiveness.
This solution is ideal for content that is not related to an interactive Ul
element, such as page headers.

Truncation

Try using line wrapping whenever possible, truncation is acceptable as
long as the full content is available on focus or drill in (after user activation
where truncated content is presented). An indication that this information
can be accessed, should be provided to the user in some way, such as a
button or a link. This trigger allows users to activate a flow to visualize the
full content. A button can open a dialog, popup, and expand text or a
section. A link can transport the user to a new page where the full content is
available.

Examples

EE Orintaton

[Landscape @
320n 256w ey

Moshly

B

;

E
IEEEEEREE R R

LB Mar Apr Mey Am AR Aug Bep O Mew Der

Orientation 46 25 46 46

E Portrait Posts Wiews Comments Reshares
256 320w
S e
s = s —=
0 i - .
5 8 3
L £] inf v

Figure 33: Simulation of a mobile layout in both portrait and landscape
orientations to assess how content adjusts

Accessibility Design Tools - Visual Experience Page 72

% Weekly Monthly Yearly Numbers ~
~ Web - Tablet - Mobile
= m arts ~ Streen Resize Device Simulation
o o
o “ (£] in} v
< . 5 8 3
Ll .
" » 57 mast viewed ol
, @
»
((v] - On January | bought a Bag to board a small plane that fit
= o perfoctly ...
e et Map bt hog tep Ot Wew Do puagan 22.89K Views
Z = =Y
> 46 25 46 46 This is my exparience with a termo pump | purchased on = N
Posts Views ~Comments Reshares Shop.com... o @ v
Facebook 735K Views
5 a 3
TR [
©n January | bought a Bag to
Promation Support Personal Delivery board a small plane that fit
perfoctly ...
besagam 22.80K Views
An I = Ao This is my experienca with a
— " ey X termo pump | purchased on
e CRE 3 ; = Shop.com...
Facebook 7.35K Views
Your dram Ready to hetp Options and Quick delivery
promotion customers suppart variety Promation Su
An 1
&
o=
Your dream Read

Figure 34: Simulation of a web, tablet, and mobile layout in portrait and
landscape orientations to assess how content adjusts to different screen
formats

The title of the dialog can receive the focus.
‘When the title is focused, the toaltip is
revealed to provide the full truncated text.

...

Content Visibility Truncation

Interaction required to reveal full content

Use Tooltip and Button or Link for progressive disclosure

Objectives and Performance for the

Objectives and Performance for the Principal Team and... 4(i JEUU Searsiaehsiubsihniat s

Objectives and Performance for the Principal Team and
Business Personel

Content Visibilty Wrapping =l

raction required

m Cancel

Figure 35: Illustration of different truncation and wrapping scenarios using the
content visibility annotation variant

Accessibility Design Tools - Visual Experience Page 73

(O}
(8]
[
()
-
3 [S
o
x
m . .
= This_is a_ Content Visibility Wrapping =l
S wrapped_
N2 fi[e_name_ Content uses as many lines as needed
> pdf

Figure 36: Illustration of a wrapping scenario using the content visibility
annotation variant

Shared Benefits

Temporary Disabilities

All users

Responsive design and adaptable orientation, such as resizing a browser
while multitasking or rotating a phone, benefit everyone, including people
with temporary disabilities such as a broken arm or eye strain, by reducing
effort and preventing loss of content or functionality.

Limited Coghnition

Cognitive

A clear, consistent layout across screen sizes and orientations reduces
mental effort, supports predictable navigation, and prevents confusion
caused by shifting or hidden content. Consistent placement of navigation
and controls supports memory and recall, while flexible device and
orientation options allow users to choose the setup that best supports
focus, making the experience more intuitive and less overwhelming.

Accessibility Design Tools - Visual Experience Page 74

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Limited Mobility

Interactions

Responsive and adaptive design helps users with reduced mobility
navigate and interact across devices. Layouts that adjust appropriately
prevent interactive elements from becoming too small or hard to reach, and
consistent placement of controls minimizes physical effort. Flexible device
and orientation options allow users to choose the setup that best supports
their motor abilities.

For Developers
Developers should verify during the implementation whether they:

use relative units

use media queries

use responsive layout grids

do not intentionally suppress responsivity (e.g., by setting special
flags)

do not limit device orientation capabilities

References

WCAG 2.2

1.3.4 Orientation (AA)

1.4.10 Reflow (AA)

Accessibility Design Tools - Visual Experience Page 75

https://www.w3.org/TR/WCAG22/#orientation
https://www.w3.org/TR/WCAG22/#reflow

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Text Resize

Simulate text resizing to verify how the text remains visible on the screen
and recommend strategies to wrap or extend elements as needed.

Component Variants

Text Resize Annotation with Recipe for Success

Simulation s e e e Size

Text Resize

Recipe: Increase size of Icon & Font to 200%
Success:
« Wrap content
+ Avoid truncation
« If truncation is inevitable, ensure content is
retrieved on progressive disclosure

Figure 37: Demonstrates how text resizing is applied while maintaining
content visibility. The annotation links the standard screen to a screen with a
200% font size increase, showing that content remains visible, with
acceptable wrapping or truncation where necessary.

About Text Resize

Accommodate text content by reorganizing the layout within the same
screen size for when users resize text up to 200%. This accessibility
support benefits low-vision users who rely on built-in capability, rather than
maghnification tools and assistive technologies.

Prepare your screen to allow the text to resize for all Ul elements. This will
require the layout to adjust and reorganize accordingly.

Users that maghnify text up to 200% can do so using a mouse and keyboard.
Using the CTRL key while scrolling the mouse wheel up or down resizes
content in Chrome, Firefox and IE. Some browsers also provide
configuration options to control text resizing.

The screen should provide visual feedback as the layout scales, ensuring
all functions remain usable on the page, including text alternatives for non-
text content. Horizontal scrollbars should be avoided. Some issues may
occur during content rearrangement.

Accessibility Design Tools - Visual Experience Page 76

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Here are some ways to solve them:

e Give avariable amount of space that adapts to the text length

e Wrap the text.

¢ Add a data tip with the full text that becomes active when the text is
truncated and make sure the tooltip is triggered on keyboard focus.

¢ Display the full text on focus; overlapping with nearby text is acceptable
in this case.

e Make the text rollable on focus.

Content Visibility

Loss of visibility is a violation of WCAG 1.4.4. Text Resize (AA). When
content needs to adjust to the screen, the design should anticipate
potential content visibility issues, which can be addressed with truncation
or wrapping.

Wrapping

This is the simplest solution to guarantee full content remains visible when
a layout adjusts to text resizing, but also text spacing and responsiveness.
Wrapping is ideal for text that is not part of an interactive element, such as
page headers, to maintain readability without affecting usability.

Truncation

Avoid truncation whenever possible. If line wrapping is not possible;
truncation is acceptable provided the full content is available on focus or
drill in (after user activation of trigger where truncated content is
presented). An indication that the content can be accessed, should be
provided to the user in some way, for example a button or a link. This
indication will enable users to trigger a flow to visualize the full content. A
button can open a dialog, popup, expand text or expand a section of text,
while a link will transport the user to a new page where the full content is
available.

Accessibility Design Tools - Visual Experience Page 77

Examples

/7 N
v/ Apples L Bananas)

Simulation e=m» ¢ ¢ @ .
/' Apples Bananas siZ€

Figure 38: Example of a component demonstrating how content adjusts
when the component is resized

Q
O
c
()
=
()
o
x
L
@©
>
D)
>

& Purchase Track and Reports

® Purchase Trackand © @
Reports

l Search @J

I Best Purchase

Notebook Serius

18 February 2022

Tech for geeks equiped with state of .
the art technology for designers

EiFacebook X

|[BTrack delivery Awaiting Delivery £}
Touchpoints @ Contributions v
Connected 40
-

social medias B S 4

20 / N >
@ Instagram X e

n/ =

Marc April May June July

'y . - =0
in Linkedin X IFacebook Instagram Linkedin

Reports available |

X

@ TikTok

Figure 39: Example of a screen demonstrating how the layout changes when
content is resized

Accessibility Design Tools - Visual Experience Page 78

Shared Benefits

Temporary Disabilities

All users

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Adjusting text size is not only important for users with visual impairments.
Enlarged text may also simply reflect personal preference or make reading
easier, and external conditions can make larger text desirable. Therefore,
designs should ensure that all content remains usable at up to 200% font
size.

Limited Cognition

L Cognitive

Increasing the text size can also support users with cognitive disabilities
such as dyslexia to ease legibility.

Accessibility Design Tools - Visual Experience Page 79

For Developers

Web Development: Developers should verify during the implementation
whether they:

e Use aresponsive layout approach (see previous chapter)

e Set the preferred browser font size

e Decide on a minimum font size

e Set font-size: 100% on the HTML tag

e Use em/rem units for font sizes

e Observe how it behaves in practice by checking for truncation,
wrapping, and other display issues

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Do not suppress any zooming functionality. In particular, avoid the
following:

<meta name="viewport" content="width=device-width,
x initial-scale=1, maximum-scale=1l, user-scalable=no">

Native Mobile Development: Verify that all app text and object borders
adapt to font resizing settings of the platform without truncation or
improper wrapping.

References

WCAG 2.2

1.4.4 Resize text (AA)

1.4.8 Visual Presentation (AAA)

Accessibility Design Tools - Visual Experience Page 80

https://www.w3.org/TR/WCAG22/#resize-text
https://www.w3.org/TR/WCAG22/#visual-presentation

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Text Spacing

Simulate the layout with text spacing applied to the content and observe
how it affects the organization of Ul elements on the screen.

Component Variants

Text Spacing Annotation with Recipe for Success

Recipe:
Letters Words Lines Paragraphs
0.12x 0.16x 1.5x 2x

Simulation eas» e e @

Text Spacing

Success:
+ Wrap content, avoid truncation
= [f truncation is inevitable, ensure content is
retrieved on progressive disclosure

Figure 40: Simulate the web screen layout shifts when customizing the text
spacing, ensuring content visibility is maintained using wrapping or truncation
where acceptable. Annotation includes instructions to address text spacing.

About Text Spacing

Many people with visual deficiencies benefit from increased text spacing,
as single-spaced blocks can make it difficult to track lines and distinguish
characters. By allowing users to adjust line height, letter spacing, and word
spacing, the layout can expand naturally without breaking content, which
improves readability and reduces visual strain. It is essential to note that
when text space increases, the screen area requires more space to display
the information, preferably without truncation. All information should
remain visible.

A designer can test how additional test spacing affects the layout to ensure
that the content remains readable and operable when text spacing is
activated. As a result, Ul elements may need to be enlarged to fit the
content or wrap it to the next line. Here are the rules applied to text
spacing;

Line height (line spacing) to at least 1.5 times the font size
Spacing paragraphs to at least 2 times the font size

Letter spacing (tracking) to at least 0.12 times the font size
Word spacing to at least 0.16 times the font size.

These rules apply to small or large pieces of text, including labels, read-
only fields, header and sub header, small strings of text, and text used in
tables.

Accessibility Design Tools - Visual Experience Page 81

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Avoid truncation if possible. Explore wrapping the text and adding an extra
line, such as on a table or cards. Content cut off with no way to access to
the hidden information demonstrates poor design. Truncation should
provide access to the full content, either through an additional click to read
the whole content or a tooltip triggered on keyboard focus.

Examples

Channels Regular Post Settings & Marketing Campaign
Configuration

Channels Regular Post Settings & Configuration Marketing Campaign K e Updates: ever ¥ 2 minutes

Touchpoints @ Shared Rev

Simulation emm e e e

ting touchpoints
v

: Connnecting touchpoints

Facebook ¥
nnnecting touchpoints

Figure 41: Example for simulating how a web screen layout shifts by text
spacing, ensuring content visibility is maintained including recommendations
to fulfill the requirement

Shared Benefits

Limited Cognition

Cognitive

Many people with cognitive disabilities benefit from adjustable text
spacing, as it helps track lines of text more easily and reduces mental effort
when reading dense content. Allowing line height, letter spacing, and word
spacing to expand naturally supports comprehension, prevents confusion,
and makes the reading experience more manageable and less
overwhelming.

For Developers

Web Development: Developers should check during the implementation
that they:

e Use aresponsive layout approach (see previous chapter)
e Set the preferred browser font size

Accessibility Design Tools - Visual Experience Page 82

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

e Decide on a minimum font size
e Set font-size: 100% on the html tag
e Use em/rem units for font sizes

Additionally, Developers should provide an option to override default text
spacing by defining corresponding CSS as follows:

*{line-height: 1.5em !important;
letter-spacing: 0.l2em !important;
word-spacing: 0.l6em !important;

}

p{margin-bottom: 2em !important;}

This can be configured, for example, in the application settings.

Native Mobile Development: Developers should verify whether all app text
and object borders adapt to extra text spacing settings of the OS without
causing truncation or unwanted wrapping.

Alternatively, Developers should ensure the ability to select a font with
larger spacing, which has the same effect.

References

WCAG 2.2

1.4.12 Text Spacing (AA)

Accessibility Design Tools - Visual Experience Page 83

https://www.w3.org/TR/WCAG22/#text-spacing

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Tooltip

Use tooltips to clarify icons, map elements, and graph data points. Ensure
they work with both mouse and keyboard and do not exclusively hold
critical information.

Component Variants

Tooltip Annotation

@ Tooltip: Text (Hotkey)

Figure 42: Tooltip reminder pointing to the element that will reveal
information on mouse over or keyboard focus.

About Tooltip

Atooltip is a short piece of text that appears on mouse hover or keyboard
focus, providing an additional layer of information in the Ul. Tooltips are
commonly used with icons, links, graphics, charts, maps, and other
interactive elements. They are especially helpful for people with vision, but
it is important to note that some blind users disable tooltip narration in
assistive technologies. Because screen reader users can switch off the
announcement of tooltips, they should never be the sole way of
communicating essential information. Read more about this topic in the
Screen Reader Experience chapter.

Some users also rely on screen magnifiers to read the content. To support
them, tooltips should:

e Stay visible long enough to be read comfortably.
e Scale correctly when zoomed.
e Avoid overlapping or hiding other important interface elements.

Since tooltips appear and disappear with keyboard focus or mouse hover,
the interaction should be designed so that users can perceive the
additional content and dismiss it without disruption.

Tooltips must be:

e Dismissible (e.g., by pressing Escape).
¢ Persistent long enough for comfortable reading.
¢ Positioned carefully so they do not obscure other pertinent information.

Accessibility Design Tools - Visual Experience Page 84

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Tooltips are usually not associated with a visual design. They are rendered
by the system. Tooltips are dismissed when users move the mouse out of
the triggered element or continue tabbing through the interface.

Recommended Usages

Because tooltips can be easily missed, they should not be the only way of
providing vital information to complete a task. Use a tooltip only for
secondary or supplemental information, not for repeating visible labels or
obvious interactions. Some appropriate use cases that would require an
invisible description for screen reading users:

e Onboarding guidance: introduce new users to a flow (typically no more
than 3 or 4 tooltips).

e Featured adoption: highlight and explain new capabilities.

e Taxonomy support: clarify terminology and remind users about rarely
used features.

Tooltips can be used to inform users about available shortcuts, such as
hotkeys in native tooltip on the screen. However, they should only be
attached to interactive Ul elements. Placing tooltips on non-interactive
elements prevents users with limited mobility, such as keyboard-only users,
from accessing information. For screen reader users, a tooltip should
function as an invisible label, so it is announced once, minimizing verbosity
for blind users. This also ensures the information remains available when
users disable tooltip announcements in their assistive technology.

Tooltips can also be triggered through gestures and short presses on
mobile devices. In mobile applications, they are typically revealed with a
long press or by tapping an info/help icon, since a short press is reserved
for the primary action. While these patterns are common, there is no
universally adopted gesture standard across industries to open tooltips in
mobile apps.

Beyond Tooltip

The WCAG requirement 1.4.13 Content on Hover or Focus (AA) covers any
content that appears when a user hovers with a mouse or focuses with a
keyboard, such as tooltips, popovers, dialogs, or custom dropdowns. The
requirement ensures that this content is usable for everyone by specifying
that it must be dismissible without moving the pointer, remain visible while
being hovered over or focused, and not disappear unexpectedly. This
helps users with limited mobility, low vision, or those using keyboard
navigation to fully access and interact with additional content.

Tooltips and popovers are useful because they reduce the need for users
to interrupt their workflow and consult documentation. However, when

Accessibility Design Tools - Visual Experience Page 85

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

more detail is required, it is often better to use an overlay popup, a
popover, or to present the information in context menus.

The tooltip annotation was moved to the Visual Experience category
because it enhances interface clarity for sighted users by displaying
additional information without cluttering the main layout. For sighted users,
a tooltip can serve as an alternative to a label for example when an icon
button is used. For blind users, however, tooltips are often disabled in
screen readers, so they should not be relied upon as the only method of
conveying vital information.

Examples

@ Tooltip: Edit (Ctri+E)

Figure 43: Example tooltip for an Edit button

Keep in Mind Content for Sighted vs Blind Users

Do not confuse content intended to support screen reader users and
content meant to support sighted users.

Tooltips provide secondary information for sighted users, helping them
understand context through visual proximity and building confidence
about the action that will be triggered.

Content that appears on hover or keyboard focus may also be repeated by
the screen reader if the user has not disabled the tooltips in the settings.
However, it is likely that users who do hear them will often skip the
repeated text. Besides tooltips, invisible labels should also be provided to
support blind users, rather than solely relying on tooltips.

Accessibility Design Tools - Visual Experience Page 86

Q
O
c
()
=
()
o
x
L
@©
>
D)
>

This is a super long header title that can not be read com...

This is a super long header

@ Tooltip: title that cannot be read
completely

Figure 44: Tooltip added to truncated text, shown on hover or keyboard
focus, only to be used when text wrapping is not possible and can be
triggered on focus

@ Tooltip: Save (Ctri+S) m

Figure 45: Annotation in a design specification showing the proposed content
of the tooltip and its final rendered appearance

Contrib OToo[tip: "June 2022 30 visualizations"

March April May June July

O Facebook O Instagram O Linkedin

Figure 46: Design specification showing proposed content for implementing
a tooltip as a data tip

Accessibility Design Tools - Visual Experience Page 87

Update

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed
diam nonumy.

@ Tooltip: Continue and update

Figure 47: Button with a tooltip that shows the full label which is helpful for
screen maghnifier users

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Shared Benefits

Temporary Disabilities

All users

Sighted users must be supported with tooltips to understand the purpose
of icons or buttons that lack a permanent visible text. Tooltips provide
additional context on hover or focus, helping users avoid confusion,
especially in complex interfaces or when icons alone are ambiguous.

Limited Mobility

1

Keyboard users must be supported with tooltips that appear on focus, not
just hover, so they can access the same contextual information as mouse
users and blind users using the screen reader. This ensures equal
understanding of icon-only controls or complex actions without needing a
mouse.

Interactions

Accessibility Design Tools - Visual Experience Page 88

Q
O
c
()
=
()
o
X
Ll
@©
>
&
>

Limited Cognition

L Cognitive

Tooltips support users cognitively by reducing memory load and clarifying
the purpose of icons, buttons, or data points without requiring users to
guess.

For Developers

Web Development: Developers should ensure that tooltips are
implemented either by using the native tit1le attribute of the respective
HTML element or, if they want to support custom styled tooltips, develop
their own tooltip widget following established best practices, such as those
outlined in the Tooltip Pattern | APG | WAI [W3C.

Native Mobile development: Use the native tooltip support in the Software
Development Kits (SDKs) of the given platforms:

iOS: ToolTip | Apple Developer Documentation

Android: Tooltip | Jetpack Compose | Android Developers

References

WCAG 2.2

1.1.1 Non-Text Content (A)

1.4.5 Images of Text (AA)

1.4.13 Content on Hover or Focus (AA)

- “Asimple, well-structured tool that makes
~ designing with accessibility in mind easier and
. faster”

Adelina Todorova — UX Designer

Accessibility Design Tools - Visual Experience Page 89

https://www.w3.org/WAI/ARIA/apg/patterns/tooltip/
https://developer.apple.com/documentation/uikit/uicontrol/tooltip
https://developer.android.com/develop/ui/compose/components/tooltip
https://www.w3.org/TR/WCAG22/#non-text-content
https://www.w3.org/TR/WCAG22/#images-of-text
https://www.w3.org/TR/WCAG22/#content-on-hover-or-focus

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

Interaction Experience

Imagine navigating an application with just your keyboard,
where each keystroke moves you logically and efficiently
toward your goal. What turns a complex interface into an
efficient, navigable experience? The answer is logical focus,
flow, and clear interaction patterns.

This chapter shows designers how to implement keyboard support and
create an inclusive experience for everyone, especially people with limited
mobility.

The Inclusive Interactive Experience

Prepare your application and Ul components so anyone can navigate and
interact with them using multiple input modalities.

This is vital for individuals with limited mobility, who may struggle with or
cannot use a mouse. Supporting keyboard interactions also empowers
expert users with faster, more efficient navigation and provides an essential
interaction method for screen reader users.

Ensure a logical focus order that matches the visual layout of the page.
When a user presses the Tab key, focus should move through links, buttons,
and form fields in a predictable sequence. This is essential for keyboard-
only and screen reader users to navigate without getting lost, and it creates
a more intuitive and efficient experience for everyone.

Manage focus within complex components to prevent disorientation.
Enable standard keyboard patterns, such as using arrow keys to move
between internal options, to let them explore its contents. This approach
reduces coghnitive load for all users by making complex interactions feel
predictable and manageable.

Efficient shortcuts let expert users perform common actions instantly, while
standard keys offer a predictable way to activate focused elements. This
consistency across the application reduces the mental effort required to
learn the interface, making it feel intuitive and responsive for everyone.

Accessibility Design Tools - Interaction Experience Page 90

Principles

Limited Mobility

Q
)
c
[}
=
)
o
x
Ll
c
0
3+
(S)
©
S
Q
=
[

Persona: Monique

“With age I've developed arthritis and
tremors, and | also live with Multiple
Sclerosis, which brings stiffness, muscle
weakness, and fatigue that vary from day
to day. These symptoms make precise
w« control with a mouse challenging, and |
sometimes struggle with repetitive or
time-sensitive tasks.

ars
To stay productive, | rely on alternatives like keyboard shortcuts, touch

interactions, and speech-to-text, and | work best when interfaces are
forgiving, consistent, and don’t demand precise or rushed input.”

People with mobility limitations may find it difficult to use traditional input
devices such as a mouse, keyboard, or touchscreen due to various
conditions affecting movement and dexterity. This diverse group ranges
from people born with congenital conditions to those who sustain injuries
or develop progressive diseases.

This user group includes people of all ages with various conditions
affecting movement and dexterity, such as adults with cerebral palsy,
middle-aged individuals with Multiple Sclerosis, and older adults with
tremors like Monique. These conditions affect people across all age groups,
from children born with cerebral palsy to adults who sustain spinal cord
injuries.

Conditions that may limit mobility:

Cerebral palsy, Spina Bifida

Muscular dystrophy, Parkinson's disease
Multiple sclerosis, arthritis, essential tremor
Spinal cord injury, lost or damaged limb(s)

Accessibility Design Tools - Interaction Experience Page 91

Some statistics:

e The prevalence of mobility limitations increases significantly with age,
affecting around 35% of adults by age 70 and rising to more than half for
those over 858

e With increasing age, the likelihood of developing arthritis, a chronic
inflammation of the joints, also rises. According to the CDC, it is the
leading cause of disability in the United States and limits 24 million
Americans in their daily activities.®

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
Q
=
[

Situational & Temporary Disabilities

By integrating situational and temporary disabilities in the discussion of
limited mobility, we help design teams address challenges that, while not
be permanent, can still impact user experience under certain conditions.

Examples of situational and temporary disabilities:

e Sweaty hands (as mentioned earlier): Temporary difficulty with
touchscreens or physical devices due to sweating.

e Temporary injuries (e.g, sprained wrist): Limited range of motion in the
hands or arms, making it hard to use touch devices or keyboards.

e Carrying objects: When holding heavy objects or bags, a person may find
it hard to interact with devices, for example, texting one-handed while
holding groceries.

Accessibility Design Tools - Interaction Experience Page 92

General Design Tips

1. Keyboard over mouse navigation:
Shaky hand movements and limited range of motion make mouse use
unreliable, especially when targeting small buttons or moving quickly
across the screen, leading to strain and frequent errors.

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

Design tip: Ensure all functionality is accessible via keyboard, such as
Tab to navigate, Enter/Space to interact. Maintain a logical tab order and
avoid focus traps.

2. Large and easy-to-target controls:
Small clickable areas are hard to activate accurately with limited
dexterity, often leading to missed or accidental clicks, especially when
using touch devices or a shaky pointer.

Design tip: Design buttons and interactive elements with a minimum
touch target of 44x44 px. Increase spacing between adjacent clickable
items to reduce accidental activation.

3. Simple interactions over complex gestures or shortcuts:
Multi-step gestures, such as pinch-to-zoom, swipe, or long press, and
complex keyboard shortcuts, such as Ctrl + Alt + Shift, can be physically
challenging or impossible for some users to perform.

Design tip: Simplify touch interactions by offering accessible button
alternatives. Use single-key commands or customizable shortcuts where
possible.

4. Interfaces that reduce fatigue:
Poorly designed flows with long navigation paths or excessive
interactions increase physical effort and cause fatigue, especially during
extended or repetitive use.

Design tip: Prioritize task efficiency by minimizing steps. Provide
shortcuts and customizable Ul settings (e.g., skip links, collapsible
sections) to reduce effort and preserve user stamina.

5. Visible focus cues for orientation:
Lack of visible focus indicators makes it difficult for keyboard users to
track their position, increasing the risk of activating the wrong element or
losing their place in the interface.

Design tip: Always show a clear, high contrast focus outline for all
interactive elements. Ensure the focus order follows a logical,
predictable pattern.

Accessibility Design Tools - Interaction Experience Page 93

6. Customizable input and interaction settings:
Standard input speeds, such as key repeat rate or pointer speed, may
not suit all users, and lack of control over scaling or input behavior can
increase effort and reduce usability.

Design tip: Provide adjustable settings such as pointer speed, key
repeat rates, and scaling. Allow users to personalize interaction to match
their physical abilities.

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
Q
=
[

There are other factors that impact users with physical restrictions. Fixed
screen orientations can force uncomfortable positions for those with
restricted neck or limb movement. Limited input controls, such as the lack
of integrated voice support, and poorly designed flows with long navigation
paths or excessive interactions, can increase physical effort and fatigue,
especially during extended or repetitive use.

To address these issues, designs should:

e Support flexible screen orientations, ensuring responsiveness in
both portrait and landscape modes.

e Ensure compatibility with speech or voice recognition and other
assistive technologies.

e Prioritize task efficiency by minimizing steps and offering shortcuts
or customizable Ul features that reduce physical effort.

Accessibility Design Tools - Interaction Experience Page 94

Annotations

Interaction Annotations

This checklist helps designers to remember the important aspects of
accessibility that should be addressed in the design phase.

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Interaction Experience Checklist

Input Mechanism
Focus Order

Initial Focus Position
Focus Restore
Skipping Group
Shortcut

Trigger

Motion Alternative
Minimum Target Size
Journey

0000000000

Accessibility Design Tools - Interaction Experience Page 95

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Input Mechanism

Understand how users trigger actions and navigate pages using a mouse,
keyboard, and touch devices. Follow established patterns to define
keyboard interactions and navigation within components.

Component Variants

Input Mechanisms - Touch Actions

IR EEE R
d A BB E D

Long Press
Double Long Select & Swipe Swipe Swipe Swipe
No Action Tap Tap Press Drag Right Left Down Up

H &y S H
a8 L d® Lo @

Tap and Rotate Counter
Tap Double Tap Zoom Out Zoom In Long Press Rotate Tap Clockwise Clockwise

A
@

Figure 48: Touch actions performed with the right and left hands

Accessibility Design Tools - Interaction Experience Page 96

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Input Mechanisms - Keyboard Keys

Interaction Keys

o m] e e (2] (Eml BOE

Alternate Control Key Escape Enter Space Letter Shift Delete Function
Key Combined Cancel, Trigger Select Modifier Remove
Combined becomes a Close action
becomes an Hot Key
Access Key
Navigation Keys Others
o I 722 T
- up
Arrow Arrow Arrow Up Arrow Home End Page PageUp | Signs
Right Left Down Down

Focus Skipping
Order Groups

Figure 49: Conventional keyboard keys

Input Mechanisms - Mouse Actions
N b & DY % D
5 B B B8 © %

Click and Click and
Drag Drag
No Action Hover Hover Link Right Click Left Click Horizontally Vertically
B BB B ® 83 5 B
Scroll Scroll Forbidden
Horizantally Vertically Seroll Down Waiting Scroll Up (Unavailable) Type In Mave

Figure 50: Mouse actions

About Input Mechanisms

Input mechanisms refer to the tools and methods users employ use to
interact with digital interfaces. These can include a wide range of
technologies, such as voice input, eye tracking, or assistive switches, but
this section focuses on the most common: mouse, touch, and keyboard.
Each mechanism presents unique interaction patterns and accessibility
considerations.

Designing with all three in mind ensures users can navigate, operate, and
complete tasks regardless of their preferred or required input method. This

Accessibility Design Tools - Interaction Experience Page 97

Q
)
c
[}
=
)
o
x
Ll
c
0
3+
(S)
©
S
Q
=
[

approach benefits not only users with disabilities but also those facing
situational or device-based constraints, such as using a touchscreen with
gloves or navigating solely by keyboard due to motor limitations.

A mouse is a typical desktop device for interaction and navigation, and it
can also extend to mobile capabilities. It is one of the simplest devices to
interact with visual elements due to its limited controls and combinations.

Touch input is a standard on mobile devices and tablets. It can become
complex when multiple gestures or key combinations are needed to
execute a shortcut.

The keyboard is essential for interaction and navigation, and it similarly
extends mobile capabilities. Since many users rely on the keyboard alone,
all actions available by mouse or touch must also be accessible with
keyboard shortcuts or commands. Designing for keyboard interaction
involves selecting keys that allow users to act quickly (e.g., shortcuts) and
navigate controls smoothly (e.g., arrows keys to move, Enter to open, Esc to
close).

Following common keyboard patterns helps users leverage existing
knowledge. For example, Enter or Space keys activates links, buttons, and
actions such as saving, canceling, editing, or checking a box. The F4 key
opens select lists, and ESC closes dialogs, dropdowns, or popovers and
returns focus to the trigger element.

Accessibility Design Tools - Interaction Experience Page 98

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Keyboard Keys

Figure 51: Alt key keyboard annotation indicates expected keyboard support
patterns in the designed interaction

N
@@%@

Figure 52: Mouse annotations symbolizing no action, vertical scrolling, and
click-and-drag vertically, showing expected mouse patterns in the designed
interaction

Touch Patterns

@ x

Figure 53: Touch annotations symbolizing long press and zoom out showing
expected touch patterns in the designed interaction

Pointer Gesture & Pointer Cancellation

According to WCAG 2.2 Success Criteria 2.5.1 (A) Pointer Gestures, design
should support a primary single-pointer gesture before offering alternatives
that require multiple fingers or complex paths. A single point of contact
should be the primary interaction pattern.

The goal is to enable users to operate touchscreens with one finger and
minimal gestures. In other words, “all functionality that uses multipoint or
path-based gestures for operation can be operated with a single pointer
without a path-based gesture, unless a multipoint or path-based gesture is
essential."(WCAG 2.2, Understanding SC 2.5.1)

This requirement recommends that all functionality requiring complex
pointer gestures, such as swiping, pinching, or multi-finger input, must also

Accessibility Design Tools - Interaction Experience Page 99

Q
)
c
[}
=
)
o
x
Ll
c
0
3+
(S)
©
S
Q
=
[

be operable through simple, single-pointer alternatives. This approach
benefits users who cannot perform precise or coordinated gestures due to
mobility or motor impairments, allowing them to still fully interact with the
interface.

Complex gestures may be difficult or impossible for users with limited
dexterity, tremors, or those using assistive devices such as a mouth stick or
head pointer. By providing simple alternatives, such as buttons or keyboard
commands, designers can make interfaces more accessible and inclusive.

On the other hand, WCAG Success Criteria 2.5.2 Pointer Cancellation (A)
ensures that actions triggered by pointer input, such as mouse clicks,
screen taps, or stylus presses, are intentional and not accidental. To meet
this requirement, the interaction must follow one of several safe patterns:

¢ the action occurs only on release, not on press,

e the action can be canceled by moving the pointer away before releasing,

¢ the system provides an option to undo or confirm the action, or

¢ the interaction is essential to the functionality (e.g, in certain game
mechanics).

Pointer cancellation protects users, especially those with motor
impairments or using touchscreens, from unintentionally triggering critical
functions. It improves usability by ensuring that users can interact with
interfaces safely and confidently.

Table 8: Different interaction actions and their corresponding input variants

Action Input Variants

k@ Tab '*5;
Select or Activate t& E m

Scroll @@ *&j u

Hover or Focus

Dragging Movement

Accessibility Design Tools - Interaction Experience Page 100

Creating accessible input mechanisms requires recognizing that not all
users are able to interact with digital interfaces through precise gestures or
fluid motion. WCAG Success Criteria 2.5.7 Dragging Movements (AA)
addresses this by recommending that any functionality relying on dragging,
such as reordering, drawing, or sliding, must also offer an alternative
method that does not require a continuous drag gesture.

This benefits users with motor impairments or those relying on assistive
technologies that do not support dragging easily so they can complete
essential actions. For example, instead of requiring users to drag list items
to reorder them, Designers should also offer simple tap or keyboard
accessible “move up/down” controls.

Q
)
c
[}
=
)
o
x
Ll
c
0
3+
(S)
©
S
Q
=
[

By accounting for diverse input needs, including touch, mouse, keyboard,
and assistive devices, application teams can ensure that all users are able
to perform essential actions without unnecessary physical strain or
exclusion.

Design Example:

¢ Not enough: Only allowing users to rearrange a list by drag-and-drop.

e Accessible: Providing an additional “move up/down” button to reorder
items without dragging.

Table 9: Different dragging actions and their corresponding input variants

Action Mouse Touch Keyboard

Select and 1} Use interactive buttons to

drag to move @ select and move to a
selectable destination

Scroll @@ @ u

Accessibility Design Tools - Interaction Experience Page 101

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Examples

My Recipes

Organize per category

I||| |
L
o
Q
)

Banana Cake

o —
(¢}
0
0
o
=3
n
v

AN /

Figure 54: Long press, select, and drag

Hover over link Hover over button Action loading

Show more'gjf;rmation@ Buﬂ%\ ©
g 5 0

Figure 55: Mouse interactions when hovering over a link, a button, or if an
action is loading

Accessibility Design Tools - Interaction Experience Page 102

Drag and Drop successful attempt Drag and Drop failed attempt

Q

(8]

c

g Eooe Grour-1

o g8 ékykraper

L>Ij =1

= Cinnamon @

.8 Flour

8]

©

o love Group 2

)

£
Flou@ House
Sliced Apple Gazebo

Figure 56: Drag and drop attempt

Input

Write something here

Jin

Figure 57: Mouse cursor when hovering an input field

Shared Benefits

Temporary Disabilities

All users

Users with temporary disabilities, such as a broken arm, eye strain, or post-
surgery limitations, also benefit from alternative input methods. For
example, a person with a wrist injury may rely on voice input or switch
controls, while someone experiencing blurred vision may benefit from
screen maghnification or keyboard shortcuts. Providing multiple input
options ensures that users can continue to interact effectively, regardless of
their current physical or sensory condition, supporting broader
accessibility and inclusive design.

Accessibility Design Tools - Interaction Experience Page 103

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Without Vision

Screen Reading

Blind users benefit greatly from a range of input mechanisms, especially
keyboard navigation, screen readers, and voice commands. The keyboard
provides precise, structured navigation without relying on visual cues, while
screen readers convert text and semantic structure into spoken output.
Voice input offers hands-free interaction, useful on mobile devices or multi-
tasking contexts. These mechanisms allow blind users to interact with
digital interfaces independently and efficiently when interfaces are
properly designed with accessibility in mind.

For Developers

Web Development: Developers should check the relevant online
documentation for foundational guidance, such as Developing a Keyboard
Interface | APG | WAI | W3C.

Native Mobile Development: Developer should consult the documentation
for the SDKs of the given platforms:

iOS:
Support Full Keyboard Access in your iOS app - WWDC21 - Videos - Apple

Developer

Android:
Handle keyboard input | Views | Android Developers

Across all technologies, make sure that the visible keyboard focus is fully
displayed and not obscured or truncated by other controls or control
containers.

References

WCAG 2.2

2.1.1 Keyboard (A)
2.1.3 Keyboard (No Exception) (AAA)

2.4.7 Focus Visible

2.4.11 Focus Not Obscured

2.5.1 Pointer Gestures (A)

Accessibility Design Tools - Interaction Experience Page 104

https://www.w3.org/WAI/ARIA/apg/practices/keyboard-interface/
https://www.w3.org/WAI/ARIA/apg/practices/keyboard-interface/
https://developer.apple.com/videos/play/wwdc2021/10120/
https://developer.apple.com/videos/play/wwdc2021/10120/
https://developer.android.com/develop/ui/views/touch-and-input/keyboard-input
https://www.w3.org/WAI/WCAG22/Understanding/keyboard-no-exception.html
https://www.w3.org/WAI/WCAG22/Understanding/keyboard-no-exception.html
https://www.w3.org/WAI/WCAG22/Understanding/focus-visible.html
https://www.w3.org/WAI/WCAG22/Understanding/focus-not-obscured-minimum.html
https://www.w3.org/WAI/WCAG22/Understanding/pointer-gestures

2.5.2 Pointer Cancellation (A)

2.5.6 Concurrent Input Mechanisms (AAA)

Q
)
c
2
—
)
o
x
Ll
c
0
)
O
©
—
()
+—
[

Accessibility Design Tools - Interaction Experience Page 105

https://www.w3.org/WAI/WCAG22/Understanding/pointer-cancellation.html
https://www.w3.org/WAI/WCAG22/Understanding/concurrent-input-mechanisms.html

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Focus Order

Define the logical sequence of tab order and focus flow for interactive
controls in the layout. Also, identify elements that create focus branching.

Component Variants

Single Tab Stop

®

Figure 58: Variant indicates interactive elements that receive focus during tab
navigation

Inner Tab Stops
Figure 59: Variant with a tab symbol indicates an unknown number of

additional control-inner tab stops that are not included in actual order
numbering (branched item).

Scope Horizontal, Vertical and Spatial

oo : g] oo gJ

Figure 60: Represents a single tab stop within a branched control scope,
where navigation inside the Ul element requires additional use of arrow keys
to navigate vertically, horizontally, or spatially within the control. A tab symbol
may be used to indicate additional Tab stops.

Focus Flow
Flow Direction: Left to right
Figure 61: Indicates the expected focus order flow “left to right” or “top to

bottom” (not depicted here) when individual focus order annotations may
not be required

Accessibility Design Tools - Interaction Experience Page 106

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

About Focus Order

The keyboard focus is a critical accessibility feature that applies exclusively
to interactive Ul elements, such as buttons, links, or checkboxes. Making
this focus visible is vital, as it allows users to identify the element they can
interact with, enabling them to trigger actions or explore further to access
nested functionalities.

Focus order indicates the sequence of interactive controls. Also called tab
stops, focus order is the preferred method for keyboard users to navigate
between interactive elements on the screen bi directionally by pressing Tab
for forward navigation and Shift + Tab for backward navigation.

Keyboard users perceive focus visually through a consistent style applied
to interactive element when it is focused. Blind users, on the other hand,
rely on screen reader announcements that describe the control, its current
state, and available actions. When the element is focused, the user can
activate it using the Space or Enter key.

An efficient keyboard navigation experience relies on predictable tab stops
and focus order. Keyboard users can navigate to the next element using the
tab key, but when arriving at a complex component, such as a list or table,
they often need to use additional keys, such as arrows or specific shortcuts,
to navigate within that component before continuing.

Designers should define the logical sequence of interactive controls by
leveraging the visual layout and structure used to display Ul controls and
groups of elements. To document focus order in the design documentation,
use the element that best represents the interactive Ul control on the
screen.

Simple tab stops are depicted using an outlined orange circle and a
number that represents its place in the tab order. Additional tab stops
inside the control are represented using a line and a tab symbol to indicate
their presence.

A branched item is a new starting point, a switch in strategy to continue
navigation and interaction within a complex component visible on the
screen, such as a tab, a breadcrumb, tables, a combo box, or a list inside a
popover. After reaching the branched control using the Tab key, the user
navigates within it using Arrow keys and Home/End keys and eventually
moves out using the Tab key.

SAP Figma Plugin

Accessibility Design Tools - Interaction Experience Page 107

The SAP Figma Plugin “Focus Order” helps designers annotate their
screens by identifying the relevant focus order sequence.

Examples

1 2 4
Customer Name UUbscription Name v mi

@Iore v

w Commerce Cloud

Eniconme) Beeop

Create New Element

Define and configure a new endpoint for your services.

Details Cnig ration

Deployment

oge Environments

(=] Builds

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Subscription Resources

States J

@ Repository

@ security @| Generalinformation Guide
G static Files Sets Environment t Name * omain*
2
P Product* RM Tenant*
& User Managment 0
3.256.3 v refront v
) Extension Factory

froxy Timeout (seconds) *

Working innitiated *

< Decem 2019 >

Sun Mon Tue Wed Thu Fri Sat

22 28 29 3 31 1 2 3
23 4 Ilil 6 7 8 9 1;!
24 11 12 13 14 15 16 1
25 18 19 20 21 22 23 24

26 25 26 27 28 29 30 1

Figure 62: Focus order sequence includes components with inner arrow key
navigation, such as 5, 6, and 8. Note that disabled elements are not included
in the sequence notation, for example “Options” button after 7. Additional
inner tabs of unknown number within components are indicated by an
additional “Tab” symbol (16), with numbering continuing the next control
annotation (17).

MNavigation Flow: Left to right

Grocery List Grocery List

Select ingredients you wish to buy

() | setectau
@ D Pineapple

@D Banana
® D Watermelon

o
o .

p to botton

Navigation Flow: To|

Select ingredients you wish to buy
[] setectall J
D Pineapple

D Banana

D Watermelon

Visible Focus

Make sure the visible focus is perceived by sighted
users who choose to explore the interface using
keyhoard

Add

=" Cancel

Figure 63: Focus order flow indicates the direction of tab order. The visual
focus blue line border shows which element on the screen is currently active.

Accessibility Design Tools - Interaction Experience

Page 108

https://www.figma.com/community/plugin/1072563579293318294/accessibility-design-tools-second-edition

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits

Temporary Disabilities

All users

Tab stops or focus order are not just for accessibility, they are also used by
many people who rely on the keyboard to move quickly through forms and
interfaces, making navigation faster and more efficient without needing a
mouse.

Without Vision

Screen Reading

For blind users using screen readers, tab stops and focus order are
essential for navigating and understanding content in a logical, predictable
sequence ensuring they do not miss important fields, actions, or
instructions.

For Developers

For Web Development, tab order can be programmed using two different
concepts:

1. By Document Object Model (DOM) sequence plus nesting in layout groups

Accessibility Design Tools - Interaction Experience Page 109

<div> Group 1 Group 2
<div id="groupl”
class="vertical”> 0
<button>A</button>
<button>B</button>
<button>C</button> (s)
</div> ﬂ
<div id="group2”
class="vertical”>
<button>D</button>
<button>E</button>
</div>
</div>

af

-]

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

B

Figure 64: DOM
sequence nesting in
layout groups

2. By tabindex property

<button tabindex="1">Save</button> 0 (3)

’ A\
<bu‘lcton Save —)[Delete
tabindex="3">Delete</button>
<button oV

L2
tabindex="2">Cancel</button> Cancel

Figure 65: Tab
sequence different
from default by
applying individual tab
indices

Notes:

e With tabindex="0" any element can be made to receive keyboard
focus. Use this ONLY for interactive elements, with action handlers
associated.

e With tabindex="-1" any element can receive focus only by code, by
JavaScript focus setters

e tabindex >0 is to be avoided as it can be redundant or may cause
confusion

To understand the basics, Developers should also check online
documentation that gives an introduction (such as Developing a Keyboard
Interface | APG | WAI | W3C) and then study the best practices for applying
correct focus order in WCAG 2.2 Success Criterion 2.4.3 Focus Order.

In native mobile development, platform dependent procedures must be
applied:

Accessibility Design Tools - Interaction Experience Page 110

https://www.w3.org/WAI/ARIA/apg/practices/keyboard-interface/
https://www.w3.org/WAI/ARIA/apg/practices/keyboard-interface/
https://www.w3.org/TR/WCAG22/#focus-order

iOS: Focus order depends on the structure of the view.

var body: some View {

VStack {

TextField ("First name", text: SfirstName)
.modifier (InputModifier())

.focusable ()

TextField ("Last name", text: $lastName)
.modifier (InputModifier())

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

.focusable ()

HStack (alignment: .top) {

Button (action: {}) { Text ("Save") }
.accessibility(label: Text("Save user data and continue
order form"))

Spacer (minLength: 10)

Button (action: {}) { Text ("Cancel") }
.accessibility(label: Text ("Cancel order form"))

}
}
}
}

See Building layouts with stack views | Apple Developer Documentation

Android: Implement tab navigation by layout

<Relativelayout ...>

<Button

android:id="@+id/buttonl"

android:layout alignParentTop="true"
android:layout alignParentRight="true"
android:nextFocusForward="@+id/editTextl"
el />

<Button

android:id="@+id/button2"

android:layout below="@id/buttonl”
android:nextFocusForward="@+id/buttonl™”
e />

<EditText

android:id="@id/editTextl"

android:layout alignBottom="@+id/button2"
android:layout toLeftOf="@id/button2"
android:nextFocusForward="@+id/button2"

/>

</RelativelLayout>

Accessibility Design Tools - Interaction Experience Page 111

https://developer.apple.com/documentation/swiftui/building-layouts-with-stack-views

Implement directional navigation by property, such as Directional Pad (D-
Pad) or arrow keys.

android:nextFocusUp
android:nextFocusDown
android:nextFocusLeft
android:nextFocusRight

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

To understand the basics, also consult the documentation for the SDKs of
the given platforms:

iOS:

Support Full Keyboard Access in your iOS app - WWDC21 - Videos - Apple
Developer

Android:

View | APl reference | Android Developers

References

WCAG 2.2

1.3.2 Meaningful Sequence (A)

2.4.3 Focus Order (A)

2.4.7 Focus Visible (AA)

Accessibility Design Tools - Interaction Experience Page 112

https://developer.apple.com/videos/play/wwdc2021/10120/
https://developer.apple.com/videos/play/wwdc2021/10120/
https://developer.android.com/reference/android/view/View#attr_android:nextFocusForward
https://www.w3.org/WAI/WCAG22/Understanding/meaningful-sequence.html
https://www.w3.org/TR/WCAG22/#focus-order
https://www.w3.org/WAI/WCAG22/Understanding/focus-visible.html

Initial Focus Position

Specify the Ul element that receives initial focus when the page loads or
when entering a skip block or a control.

Component Variants

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Page or Dialog

Initial focus in
page or dialog

Figure 66: Indicates which interactive Ul element on the screen will receive
focus when page loads or a dialog is displayed

| T———

Skipping Group

Initial focus in
skipping group

-

]
s’

Figure 67: Indicates which interactive Ul element inside a skipping group will
receive focus when exploring groups on the page [F6]

Control

. Initial focus

{ in a control

| S ——

Figure 68: Indicates which part of a focusable control, simple or complex, will
initially receive focus

Focus

~
i

| F——

1
1
1
1
[
.,

Figure 69: Shows a plain focus annotation, useful if you just want to display a
focus ring somewhere in your design

About Initial Focus

Initial focus is the position highlight of a single interactive Ul element,
typically by a visual outline to show which element is active. The initial
focus annotation informs the Developer which interactive element should
receive focus to prepare the keyboard experience.

Accessibility Design Tools - Interaction Experience Page 113

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

When the system communicates the current focus, keyboard users feel
confident navigating the page and interacting with elements. Focus serves
as a visual cue that an interactive element is active and ready to respond to
input, whether from a keyboard or other input devices. This state ensures
that users can navigate and interact with the interface seamlessly,
enhancing usability and accessibility. In essence, focus represents the state
in which an interactive Ul element is primed to receive user input,
facilitating efficient and inclusive digital experiences.

The initial focus is given to the most essential element of a workflow in
several contexts:

e On Page Load: When a user arrives at a new page, initial focus is set on
the first most important interactive Ul element to allow the user to start
the and proceed with keyboard navigation using the Tab key.

e During Skipping Group: F6 is a keyboard shortcut that moves the focus
between regions or groups of an application such as the address bar,
tabs, the content area, or panels. For efficient group skipping define
where initial focus should be to support users in skipping large sections.

e Controls and Complex Components: Initial focus is also useful for
groups of components such as tables, toolbars, lists, carousels and
calendars. Focus is set on the selected item for single selectable items
from a list, menu, or tabs. For multi-selectable items, the focus goes to
the first selected item.

The most essential element of a workflow marked as initial focus is also the
first element announced when a blind user arrives on a page or performs
skipping group navigation using the keyboard shortcut F6.

The concept of initial focus serves as a visual cue to that communicates
"You are here" on a page, providing essential orientation for users,
particularly those who rely on keyboards to navigate digital products.

The initial or default focus position on the screen and when entering groups
is typically set at the framework level. However, in many Ul technologies,
applications can override the default focus position and assign it to a
logical starting point on the screen.

Focus Appearance

The WCAG Success Criterion 2.4.13 Focus Appearance (Minimum) (AA)
ensures that the keyboard focus indicator is clearly visible and meets
minimum design requirements, allowing users to reliably see which element
is currently focused.

The appearance of the focus is typically shown as an outline, border or
highlight around the focused element. It is automatically provided by web

Accessibility Design Tools - Interaction Experience Page 114

Q
)
c
[}
=
)
o
x
Ll
c
0
3+
(S)
©
S
Q
=
[

browsers for interactive elements. Default style and configuration options
may vary depending on the browser vendor.

In contrast to that, the appearance of the visual focus on controls in a
brand theme is defined by a design system to align with the general
theming AND to comply with WCAG Success Criterion 2.4.13. This ensures
that focus indicators meet both visual style and contrast requirements.

Focus Visibility

While the WCAG Success Criterion 2.4.7: Focus Visible (AA) requires a
visible focus indicator to appear whenever a user navigates to an element
using the keyboard, the WCAG Success Criterion 2.4.11 Focus Not
Obscured (Minimum) (AA) requires that when a user tabs to an element, at
least part of it must be visible on the screen and not hidden behind sticky
headers, modals, or overlays. The key concerns are:

1. Visibility of Focus: Ensure that the keyboard focus is clearly visible to
users. Is the focus style visible, for example, as a border, outline, or
highlight?

2. Access and Interaction: Ensure users can access and interact with
focused elements without confusion or being lost. Is the focused
element obstructed or off-screen?

If you make the entire element fully visible on focus without requiring the
user to scroll or adjust the view, you are fulfilling the WCAG Success
Criterion 2.4.12 Focus Not Obscured (Enhanced) (AAA).

Accessibility Design Tools - Interaction Experience Page 115

Examples

(O}

(O]

5 - ~
= = Initial f i
g = Procurement Search Q
& |
L

c

9 Recently Procured

N

®

E Samsung Phone Chair Chair

‘E Last request: Dec 31,2021 Last request: Jan 3,2022 Last request: Jan 4,2027

Initial focus i

skipping group
3 (5
» e
Initial focus in P'":"Lt"‘ Settin Settin Payment Report
P Procured List ¢ Settings ettings ayme eports

Product List | Approved ltems [

l
g Eae,

Notebook Serie

Notebook Serie | Product details
J Ordered on 8 February 2022
Tech for geeks equipped with state of the art technology for designers
Quatity: 3 units Track delivery | Cancel 3 orders

| Delivery requires attention &

Who Requested

A Joe Liam Marta Maya
‘ Sales Executive Sales Executive

Waiting for a replacement to keep My current computer is resetting and
working in my projects... affecting my...
Requested on November 21, 2019 Reguested on October 3, 2019
View More View More
. S/

Figure 70: Initial focus position on page load and when navigating using
skipping groups

Accessibility Design Tools - Interaction Experience Page 116

Grocery List

Select ingredients you wish to buy

Initial focus in

[:J Pineapple

D Banana

D Watermelon

|

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Add

Cancel

Figure 71: Initial focus position in a dialog

Co Focused select control D Co Triggered by Enter key D
Select V|

de Existing Sites]

!nltlal focus | Select

Initial focus
within a control

Simulate Visitor Traffic
Create New Site

Export Map

Figure 72: Initial focus in controls. Menu Button Split Mode - Menu Opening

Accessibility Design Tools - Interaction Experience Page 117

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits

Temporary Disabilities

All users

Thoughtful initial focus design helps users stay oriented, act efficiently, and
remain confident while navigating complex interfaces. When focus starts in
the appropriate location, such as the first actionable field in a form, or the
close button of a modal, it not only saves time but reduces physical strain
and coghnitive effort for users, especially in enterprise or productivity
environments where efficiency is key.

For Developers

Web Development: Developers should consult relevant documentation for
setting focus on elements, such as:

e HTML autofocus global attribute - HTML | MDN
e HTML Element: focus() method - Web APIs | MDN

Native Mobile Development: Consult the relevant documentation for the
SDKs of the given platforms to set the focus and check the following code
snippets:

iOS: Use @FocusState to track or set a focus position.

enum Field: hashable {
case email
case password }

@FocusState private var focusedField: Field?

TextField (“Email”, text:Semail) .focused($focusedField,
equals: .email)

SecureField (“Password”, text:S$pwd).focused(S$focusedField,
equals: .password)

.onSubmit {
if !isEmailvalid {
focusedField = .email

See also:

Accessibility Design Tools - Interaction Experience Page 118

https://developer.mozilla.org/en-US/docs/Web/HTML/Reference/Global_attributes/autofocus
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/focus

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

e https://developer.apple.com/videos/play/wwdc2021/10023/
e https://developer.apple.com/documentation/swiftui/focusstate

Android: Programmatically set focus on a view when an activity is opened.

private EditText mEdit;
mEdit = (EditText) findViewById(R.id.myEdit);
mEdit.requestFocus () ;

See also:

e https://developer.android.com/reference/android/view/View#requ

estFocus(int)

e Change focus behavior | Jetpack Compose | Android Developers

References

WCAG 2.2

2.4.7 Focus Visible (AA)

2.4.11 Focus Not Obscured (Minimum) (AA)

2.4.12 Focus Not Obscured (Enhanced) (AAA)

2.4.13 Focus Appearance (AAA)

Accessibility Design Tools - Interaction Experience Page 119

https://developer.apple.com/videos/play/wwdc2021/10023/
https://developer.apple.com/documentation/swiftui/focusstate
https://developer.android.com/reference/android/view/View#requestFocus(int)
https://developer.android.com/reference/android/view/View#requestFocus(int)
https://developer.android.com/develop/ui/compose/touch-input/focus/change-focus-behavior
https://www.w3.org/WAI/WCAG22/Understanding/focus-visible.html
https://www.w3.org/WAI/WCAG22/Understanding/focus-not-obscured-minimum.html
https://www.w3.org/WAI/WCAG22/Understanding/focus-not-obscured-enhanced.html
https://www.w3.org/WAI/WCAG22/Understanding/focus-appearance.html

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Focus Restore

After the user completes a task, keyboard focus returns to the trigger
element, or to the next logical Ul element if the trigger is no longer present.

Component Variants

Focus Restore to Trigger

Focus Restore
Back to Trigger

Figure 73: Indicates the Ul element that triggered an action and shows where
the focus should return.

Focus Restore to Next Logical Element

Focus Restore
Back to Next Logical Element

Figure 74. Indicates the next logical Ul element should receive focus at the
end of the flow.

About Focus Restore

Designing predictable and inclusive interaction flows is only complete
when focus return is considered. Focus management is a frequent source
of accessibility issues, particularly for keyboard and screen reader users.
One critical, yet often overlooked, aspect is focus restore which is the
practice of returning keyboard focus to a logical and expected location
after a task or interaction is completed. Proper focus restore ensures that
users do not lose their place in the interface, especially after dismissing
dialogs, completing forms, or removing elements from a list. Designing and
annotating where focus should land after a flow demonstrates careful
attention to keyboard support and helps reinforce this requirement during
implementation.

This annotation evolved from the concept of predictable context,
previously featured in the Foundation chapter of the Accessibility Design
Tools by SAP first edition. As the toolkit matured, the predictable context
concept was split into two distinct annotations: focus restore, which

Accessibility Design Tools - Interaction Experience Page 120

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

addresses the interactive experience, and wayfinding and orientation,
which supports users in understanding transitions between pages and
dialogs. Together, these annotations help ensure users maintain context
and continuity throughout an interaction.

Designing for focus restore requires an understanding of the predictability
of user flows. However, there are scenarios where simply restoring focus to
the original trigger may not be possible or logical, for example, when the
trigger element, such as a deleted list item, no longer exists, or when the
item has been repositioned in a way that breaks continuity. In such cases,
designers must plan alternative destinations for restored focus, such as the
closest logical sibling element, the updated container, or a clearly labeled
notification.

By planning for focus behavior early and documenting it through
annotations, design teams reduce the risk of disorientation and
accessibility issues. Focus restore is more than a technical fix; it is a user-
centered practice that supports continuity, efficiency, and confidence for
users who rely on keyboard navigation.

Focus Restore: Back to Trigger

When an interaction is completed, such as dismissing a dialog, popover, or
overlay, focus should return to the element that originally triggered the
interaction. This annotation is used to indicate a pattern where the trigger
remains relevant and present in the Ul, and the user journey expects a
return to the point of origin. For example, closing a modal that was opened
by an Edit button within a list item should return focus to that same button.
This helps users stay oriented and maintain continuity in their workflow.

Design tip: Use when the trigger remains visible, unchanged, and still
represents the next logical step in the user workflow. Doing so reinforces
predictability and supports reactivation or re-entry.

Focus Restore: Back to Next Logical Element

In some cases, returning focus to the original trigger is not appropriate,
especially if the trigger was deleted, moved, or is no longer relevant. In
these situations, focus should move to the next logical element in the
workflow of the user. This annotation applies when the action modifies the
structure of the page, such as deleting a row in a table. Rather than
returning focus to a missing or moved trigger, Designers should identify the
most relevant next step in the task flow, such as the next row in a list, a
message area, or an adjacent control. This approach prevents
disorientation and helps users maintain a smooth workflow.

Accessibility Design Tools - Interaction Experience Page 121

Design tip: Designers must understand the journey of the user and

Q
% intended workflow. They should anticipate the next likely action of the user
s and annotate the interface accordingly to maintain momentum and
o minimize confusion.
Ll
c
2 Examples
©
iE
= 4 »
I GEED (N Edit Recipe
Recipes

Focus Restore
Back to Trigger

Save Cancel

 Action Trigger

25 Close and Backto Start of the Journey

Figure 75: Focus restore and action trigger annotations in an Edit item use

case
» GEE—— cd
Recipes
Confirm Cancel

Action Trigger

[EZS Close and Back to Start
of the Journey

Focus Restore “
Back to Next Logical Element it

E3EY

Figure 76: Focus restore annotation applied on the trigger Ul element after
the displayed dialog closes.

Accessibility Design Tools - Interaction Experience Page 122

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits

Temporary Disabilities

All users

Older users may experience a combination of physical, cognitive, or
sensory limitations. Clear, predictable navigation, including focus restore,
supports confidence and independence in digital environments.

Without Vision

Screen Reading

Blind users rely entirely on focus order to understand where they are in an
interface. Without proper focus restore, they may be end up at the top of
the page or in an unrelated area, causing confusion and disorientation.
Predictable focus behavior helps maintain context and mental mapping of
the UL

Vision and Color Limitation

® \isuals

Users with low vision often use screen maghnifiers or high zoom levels. If
focus is not restored predictably, they may lose their visual context,
especially if the new focus is off-screen or unexpected. Proper focus
placement avoids unnecessary panning or hunting for the next step.

Accessibility Design Tools - Interaction Experience Page 123

Limited Cognition

Cognitive

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Predictability and continuity are crucial for users who may struggle with
memory, attention, or processing complex interactions. Sudden or illogical
focus jumps can increase cognitive load, leading to task abandonment.
Focus restore supports smoother interaction flows, reducing frustration.

Accessibility Design Tools - Interaction Experience Page 124

For Developers

1. Review all information from the previous chapters as foundational
knowledge.
2. Apply the focus restore concept according to the use case:

a. Previously focused element is still visible: Return focus to that
element. Typical case: a button opens a dialog; when the dialog
closes, focus returns to the button.

b. Previously focused element has completely disappeared: This
can occur during page navigation. Record the last focused
element and, when navigating back, restore focus to the element
that was focused on before navigation, if it is available.

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

References

WCAG 2.2

3.2.1 On Focus (A)

3.2.3 Consistent Navigation (AA)

Accessibility Design Tools - Interaction Experience Page 125

https://www.w3.org/WAI/WCAG22/Understanding/on-focus
https://www.w3.org/WAI/WCAG22/Understanding/consistent-navigation

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

Skipping Group

Allow users to skip directly to the main content or bypass large blocks of
repeated content across multiple pages, improving user efficiency.

Component Variants

Skipping Group

C L™)

Figure 77: Identifies a group of Ul elements that can be skipped in the tab
order with a designated keyboard hotkey.

About Skipping Group

Skipping groups are a mechanism described by WCAG to bypass blocks of
content that are repeated across multiple web pages. Guideline 2.4.1
Bypass Blocks (A) reminds designers to provide a way for users to skip
repeated content, like navigation menus, so they can quickly reach the
main content.

People with certain disabilities have difficulty reaching the main content of
a page efficiently. For example, screen reader users visiting several pages
on the same site can avoid listening to repeated headings and navigation
links (imagine 200 words less to listen to) and reach the main content
directly. This reduces the number of announced words, allowing users to
navigate faster and feel more productive.

The same efficiency applies to keyboard users, who can reach the main
content using fewer keystrokes, avoiding unnecessary repetition. Skipping
to the main content can also prevent severe physical strain for some users.
Users of screen maghnifiers benefit as well, since they avoid long navigation
paths through headings or repeated blocks of information when entering a
new page. Quick access to the main content allows these users to locate
the main body of the page without manually searching.

We propose skipping group annotation to define regions that can be
bypassed. These groups improve navigation efficiency by allowing users to
skip repeated content and access the main content more quickly.

Annotate a skip block to define a group of contextual information. Arrange
the elements in a logical order to guide users through skipping navigation in
the same way they would perceive the visual layout hierarchy. Ensure that
users understand the hierarchy across groups during navigation. The

Accessibility Design Tools - Interaction Experience Page 126

direction of skipping navigation is useful on complex layouts. Anticipate the
initial focus when a user lands on a new group by using the focus
placement annotation.

One mechanism to bypass blocks is by using the F6 key. Reverse navigation
uses SHIFT + F6 keys to return the user to the previous skip block.

Examples

fg Procurement a|

ently Procured

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Samsung Phone : Chair Chair
Initi . Last request: Dec 31,2021 | Last request: Jan 3,2022 Last request: Jan 4,2023
nitial focus in i
skipping grou !
PPINg group i +2 i a(a 7
B i 4
)
>
W B
b
Initial focus in bcured List | Settings Settings Payment Reports

skipping group |

-

Product List |/ Approved Items [

Notebook Serie

Notebook Serie | Product details
J Ordered on 8 February 2022
Tech for geeks equipped with state of the art technology for designers
Quatity: 3 units Track delivery | Cancel 3 orders

| Delivery requires attention &

Who Requested

It - Joe Liam Marta Maya
i Sales Executive Sales Executive

Waiting for a replacement to keep My current computer is resetting and
working in my projects... affecting my...
Requested on November 21, 2019 Requested on October 3, 2019

View More View More

Figure 78: Skipping group sequence with initial focus positions on a
procurement page.

Accessibility Design Tools - Interaction Experience Page 127

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits

Temporary Disabilities

All users

Expert users benefit from the skipping groups annotation because it
supports faster navigation through large or repetitive content areas. By
enabling shortcuts, such as utilizing the F6 key, to jump between major
interface regions, such as toolbars, content areas, or side panels, expert
users can quickly reach their target without unnecessary tabbing. This
enhances workflow efficiency in complex applications.

Without Vision

Screen Reading

Blind users also rely heavily on group-skipping functionality to avoid
navigating through every single item in a dense interface. When screen
readers announce the ability to skip to specific regions, it helps blind users
maintain orientation and reduce the time spent moving sequentially
through unrelated elements. This improves usability, supports
independence, and aligns with the structure they expect from well-
designed, accessible interfaces.

For Developers

Web Development: Define a concept of skippable groups for framework
components. In this context, groups, refer to large, complex controls such
as tab strips and tables, or control containers such as panels and forms.

Technically, implement this by attaching a JavaScript keyup listener and
callingel.firstElementChild. focus () While preventing event bubbling
as shown below:

document.addEventListener ('keyup', (e) => {
// forward navigationsti if (e.keyCode == 117) { // £f6
keycode

e.preventDefault () ;
e.stopPropagation() ;

Accessibility Design Tools - Interaction Experience Page 128

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

var el = findNextSkipContainer () ;
el.firstElementChild.focus(); // default, can be
overridden

}
}, false);

Native Mobile Development: Consult the documentation of the SDKs of the
given platforms to set focus, and review the following code snippets:

iOS:
Options to structure a screen:

e Use the heading trait to structure the screen, which improves voice
over navigation.

e Use focusSection to define a group, which enhances keyboard
and remote control navigation:
https://developer.apple.com/documentation/swiftui/text/focussecti

on()

import SwiftUI

struct ContentView: View {
@State private var isEnabled = false

var body: some View {
VStack {
Button ("Print message") {
print ("Hello World!")

Button ("Delete message") {
print ("Message deleted.")

}
} .keyboardShortcut ("p")
.focusSection ()

e Use app shortcuts to move focus on your own, which improves
keyboard control

Android:

Accessibility Design Tools - Interaction Experience Page 129

https://developer.apple.com/documentation/swiftui/text/focussection()
https://developer.apple.com/documentation/swiftui/text/focussection()

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

For entire app and its activities, declare a custom skipping key using keyUp:

public static final int KEYCODE F6 = 136;
@Override

public boolean onKeyUp (int keyCode, KeyEvent event) {
switch (keyCode) {

case KeyEvent.KEYCODE F6:
skipToNextPanel () ;

return true;

default:

return super.onKeyUp (keyCode, event);

}

}

See Handling Keyboard Actions | Android Developers

References

WCAG 2.2

2.4.1 Bypass Blocks (A)

Accessibility Design Tools - Interaction Experience Page 130

https://stuff.mit.edu/afs/sipb/project/android/docs/training/keyboard-input/commands.html
https://www.w3.org/WAI/WCAG22/Understanding/bypass-blocks

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shortcut

Give expert users shortcuts, hotkeys and access keys, to enhance
productivity and increase work efficiency.

Component Variants

Hotkey

& Activate Ctrl+[]

Figure 79: Associate a Hotkey to a button to enable users to trigger the action
using a shortcut.

Access key

(G} Focus Alt+[]]

Figure 80: An access key assigned to a button, enabling users to navigate to it
with a keyboard shortcut.

Transfer Focus - Navigation
< Transfer Focus & Transfer Focus
F2 | Continue with arrows (-I-) F4 | Expand and focus on first element Z;‘

¢ Transfer Focus
F6 |Skipping6roup |

Figure 81: Inform when a group control requires a switch navigation to
continue exploring element within a container. Adding commonly used
shortcut to switch navigation within groups speed annotations.

Accessibility Design Tools - Interaction Experience Page 131

Q
)
c
[}
=
)
o
x
Ll
c
.2
3+
(S)
©
S
Q
=
[

About Shortcuts

Shortcuts are keyboard combinations that enhance productivity by
providing users a faster way to access functionality. They can be
implemented as hotkeys or access keys.

Hotkeys

A hotkey allows users to trigger essential and frequently used functions
from anywhere in the interface. Hotkeys typically use the CTRL + letter key
combinations.

For example, users can run a search by pressing the Enter key while in the
search field or save data using the combination CTRL+ S.

Inform all users about applied hotkeys in the Ul. Show them in the tooltip
of a button or as a part of a menu item that triggers a respective action.

Access keys

An access key improves navigation efficiency by making a control available
at anytime, anywhere in the Ul. Access keys typically consist of ALT + letter
or ALT + number key combinations. Unlike hotkey, access keys do not
trigger essential and frequently used controls; they just move the focus to
the control bound to the key.

Available access keys are usually indicated by underlining the first
character of the control label associated with the access key.

Transfer focus for inner navigation

When navigating a web interface with the Tab key, users typically move
between interactive elements such as buttons, links, and form inputs.
However, when they encounter group components such as lists, menus, or
grids, the navigation behavior often changes. To avoid excessive tabbing
and to improve efficiency, these groups commonly support arrow key
navigation.

For example, in a list or menu, users can move vertically using the Up and
Down arrow keys, allowing them to explore content quickly and logically
without losing their place in the interface. This strategy preserves logical
flow and reduces unnecessary keystrokes.

Complexity increased when list items or group elements contain nested
interactive controls such as buttons, dropdowns, or editable fields. In these
cases, users need a way to intentionally enter and exit the inner content.

Accessibility Design Tools - Interaction Experience Page 132

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

A common solution is to use shortcuts such as F2, which transfers focus
into the item, enabling interaction without disrupting the outer navigation
flow. This ensures that users can browse lists or menus at a high level and
dive deeper only when needed, improving efficiency for keyboard users
and reducing coghnitive load by minimizing unintentional focus jumps.

Additional shortcuts such as F4 to expand items or F6 to skip between
regions or groups further support navigation in complex interfaces. These
shortcuts allow users, especially those with limited mobility or who rely on
assistive technologies, to navigate quickly and predictably across the UL.

This structured and layered navigation model aligns with accessibility best
practices by maintaining logical focus flow, preserving user orientation, and
providing greater control and flexibility when interacting with nested or
grouped components.

Examples

0 G

Section #1 title

Form name

Save Cancel

& Activate Cirl+S

(&R < Acivate Ctrl+F5 (6

— J

Figure 82: Hotkey and transfer focus annotations applied to mark the
respective controls in a Ul

Accessibility Design Tools - Interaction Experience Page 133

ﬁlable To Enroll (4 of 12)

Health Insurance & Transfer Focus i

$ 4+, p Enroll | >
Insurance F2 | continue with arrows €3 |
|

Life Insurance
17 Enroll | >

Insurance

Initial focus

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Limited Flexible Spending Account
3]) Enroll | >
Savings Plan
Employee Pension
.,s" p v i Enroll | >
Retirement Savings
View All

Figure 83: Example of transfer focus, initial focus, and tan annotations within a
control

Edit button shortcut can be activated using hotkey CTRL+E or accessed using ALT+E.

SAP Page Title

Robot Arm Series 9 e Ctrl+E m Delete | | Simulate Assembly

'ﬂ-i Manufacturer: Robotech Status Delivery Time Assembly Option
"‘
v

Y Factory: Florida, OL Delivery M) 12days To Be Selected

a— Supplier: Robotech (234242343)

Leasing Installment

[~)
) Personal
Customer [nformation x
intormation
Profile RecentPurchases Payment
Street / Number. *
South Gettysburg Avenue 369
Sunglasses Postal Cote | City*
" BARCLUR Vintage Womens Sunglasses Polacized Walrut Rinless Heidelberg
Square Lusury Sun Glasses Counry:*
| Germany ~
Sacial Media
Contact
: I Emait+
(o p— opa— |
g * Summer [s funnier with 8 polarized sungiasses. Hapgy with my @:[a:1]0:]0:]
! rchase.
M L Personal, Intormation
J e

Save is a default key on dialog scope is Enter to save dialog, or

Ctrl+S, and ESC key closes dialog.

g Emer 8 vaiid posal ende
Postal Code

Special shipping conditions apply.
&
untry

Persanal, Contact

Enter an emal address.
Emas

User name IMILLER was assigned

User
IEER { @ Focs AL+CTRL+M Save [

Figure 84: Examples of hotkey and access key annotations

Accessibility Design Tools - Interaction Experience Page 134

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits

Temporary Disabilities

All users

Expert users benefit from shortcuts because they enable faster, more
efficient interaction with digital interfaces. By bypassing multiple clicks or
tab stops, shortcuts streamline interaction and enhance productivity,
especially in complex or repetitive workflows. This allows experienced
users to stay in flow and complete tasks with greater speed and accuracy.

Without Vision

Screen Reading

Blind users rely on shortcuts to navigate interfaces without having to
navigate through every element sequentially. Shortcuts provide direct
access to key regions or actions, making the experience more efficient and
predictable when using screen readers. This reduces coghnitive load and
improves orientation, especially in dense or dynamic interfaces.

For Developers
Web Development:

Hotkeys: Implement using keyup listener with event bubbling prevented

document.addEventListener ('keyup', (e) => {
if (e.ctrlKey &&
String.fromCharCode (e.keyCode) .toLowerCase () === 'e') {

e.preventDefault () ;
e.stopPropagation() ;
// Do edit stuff...

}
}, false);

Note: Register hotkeys and default keys for a view at top-level container.
The container collects all defined keys using a subscription model.

Accessibility Design Tools - Interaction Experience Page 135

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Access Keys: Implement using the accesskey property.

<button accesskey="s">Save</button>

Note: accesskey declarations have a local scope and are managed by the
browser.

Native Mobile Development:

iOS: For an example in defining shortcuts, refer to:
https.//swiftwithmajid.com/2020/11/17/keyboard-shortcuts-in-swiftui/

var body: some View {

HStack {

VStack {

Button ("1"™) {}

.keyboardShortcut ("1", modifiers: [.control])
Button ("2") {}

.keyboardShortcut ("2", modifiers: [.control])
Button ("3") {}

.keyboardShortcut ("3", modifiers: [.control])
Spacer ()

}
.border (Color.white, width: 2)

Android Track Shortcuts:

@Override

public boolean dispatchKeyEvent (KeyEvent event) {
if (Build.VERSION.SDK INT>10 &&
event.getAction () ==KeyEvent .ACTION DOWN &&
event.isCtrlPressed()) {

String actionType="NONE";

final int keyCode = event.getKeyCode();

switch (keyCode) {

case KeyEvent.KEYCODE C:

actionType = "COPY";
break;

case KeykEvent.KEYCODE V:
actionType = "PASTE";
break;

Accessibility Design Tools - Interaction Experience Page 136

https://swiftwithmajid.com/2020/11/17/keyboard-shortcuts-in-swiftui/

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

}

return true;
}
return super.dispatchKeyEvent (event) ;

}
Populate Keyboard Shortcut Overview

override fun onProvideKeyboardShortcuts (
data: Mutablelist<KeyboardShortcutGroup>?,
menu: Menu?,

deviceId: Int

) A

super.onProvideKeyboardShortcuts (data, menu, deviceld)

// Requires API 24

if (Build.VERSION.SDK INT >= Build.VERSION CODES.N) {

val keyboardShortcutGroup = KeyboardShortcutGroup ("Test
Group")

keyboardShortcutGroup.addItem (KeyboardShortcutInfo ("Shortcut
One", KeyEvent.KEYCODE 7, KeyEvent.META ALT ON))

data?.add (keyboardShortcutGroup)

}

}

See for instance Register hardware keyboard shortcuts in Android's help
menu - Stack Overflow

References

WCAG 2.2

2.1.1 Keyboard (A)

2.1.2 No Keyboard Trap (A)

2.1.4 Character Key Shortcuts (A)

Accessibility Design Tools - Interaction Experience Page 137

https://stackoverflow.com/questions/71062697/register-hardware-keyboard-shortcuts-in-androids-help-menu
https://stackoverflow.com/questions/71062697/register-hardware-keyboard-shortcuts-in-androids-help-menu
https://www.w3.org/WAI/WCAG22/Understanding/keyboard-no-exception.html
https://www.w3.org/WAI/WCAG22/Understanding/no-keyboard-trap
https://www.w3.org/WAI/WCAG22/Understanding/character-key-shortcuts

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Trigger

Use a trigger to indicate the beginning of a journey. Clearly communicate
what is expected after the button or link is activated, and respect
semantics: links should look like and behave like links, and the same
applies to buttons, although exceptions may exist. Clarity is essential, every
interactive element should both its purpose and the action it will perform.

Component Variants

Action Trigger
Action Trigger Action Trigger Action Trigger
- Expand / Collapse - Open Dialog/popover
- Action Trigger - Action Trigger
Display Message Show / Hide

Figure 85: Indicates the expected outcome when a button is triggered.
Common patterns keep the user in the same page.

Navigation Trigger

== > Navigation Trigger

<> Navigation Trigger
Open Page New Tab @ Open Page Same Tab

= <o Navigation Trigger
ﬂ Navigate to Section

Figure 86: Indicates the expected outcome when a link (navigation) is
triggered. In a common pattern, the link opens a new page.

About Triggers

Providing annotations that explain triggers and their outcomes such as
buttons and links, is essential for meeting accessibility requirements and
ensuring an inclusive user experience. Clear annotations help designers
and developers define the purpose and expected behavior of interactive
elements, reducing ambiguity and improving consistency in
implementation. Therefore, designers should be explicit about the
intended experience and the role of each Ul element used in mock-ups.

For users relying on assistive technologies, such as screen readers,
properly annotated triggers provide meaningful information about what an
action will do before it is activated. This includes specifying whether a link

Accessibility Design Tools - Interaction Experience Page 138

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

opens a hew page in the same tab or a new tab, or whether a button
triggers a dialog or popover.

Without these annotations, users may encounter unexpected changes in
context, increased cognitive load, or navigation barriers. Documenting
trigger behavior helps create predictable, accessible, and user-friendly
interfaces.

Screen reader users rely on descriptive labels and ARIA attributes to
understand the outcome of activating a button or link, preventing surprises
such as a popover appearing or a new tab opening unexpectedly. Similarly,
users with cognitive disabilities benefit from clear expectation, as sudden
context changes can be disorienting or overwhelming. Missing or unclear
annotations can lead to usability issues, such as Submit button
unexpectedly opening a confirmation dialog or a link redirecting to a new
tab without warning, which can cause frustration and precent task
completion.

By proactively defining trigger behavior, Designers and Developers create
more predictable and accessible experiences, reducing barriers for all
users.

Examples

€D Recipes Home » 0 G C—

Recipes

Pasta

R ——]
BX open Page same Tan gl

e Havigation Trigg

= gation Trigger
,,,J Open Page Same Tab

= -y

Chicken

Action Tiigger
- Open Dialog/popaver

. Acton Trigge
See 5 more recipes ol NS

action Trigger
= ‘Open Dialog/popover

.

Figure 87: Example of indicating action and navigation triggers in a Ul using
the respective annotations

Accessibility Design Tools - Interaction Experience Page 139

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

€ Edit Recipe » » G

Editing Pasta

b e Masigation Trigger
Open Page Same Tab

Figure 88: Example of navigation trigger annotations

Shared Benefits

Vision and Color Limitation

\isuals

Clear trigger annotations help ensure that the links and buttons are visually
distinguishable through contrast, size, or spacing and consistently placed.
This is especially important for users who rely on zoom or screen
maghnifiers to navigate interfaces.

Without Vision

Screen Reading

Trigger annotations help developers in correctly code programmatic labels,
roles, and states, ensuring that screen reader users are informed of what
the trigger is, what it will do, and whether it is currently active or disabled.

Accessibility Design Tools - Interaction Experience Page 140

Limited Cognition

Cognitive

By promoting consistency and clear labeling, trigger annotations help users
understand the outcome of interacting with an element. This reduces
ambiguity and supports decision-making during complex tasks.

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

For Developers

Consult the API documentation for common trigger elements, such as links
and buttons, in your framework.

References

WCAG 2.2

1.3.5 Identify Input Purpose (AA)

3.2.2 On Input (A)

4.1.2 Name, Role, Value (A)

Accessibility Design Tools - Interaction Experience Page 141

https://www.w3.org/WAI/WCAG22/Understanding/identify-input-purpose
https://www.w3.org/WAI/WCAG22/Understanding/on-input
https://www.w3.org/WAI/WCAG22/Understanding/name-role-value

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
Q
=
[

Motion Alternative

If a feature is activated by moving the device, such as shaking, tilting, or
gesturing, then the same function must be available through standard
interface controls. The motion must be optional unless it is essential to the
feature.

Component Variants

Motion Alternative

ly . .
@ Motion Alternative

Figure 89: Indicates where in the interface an alternative trigger is available
for a function that can also be activated by motion. Users should not rely
solely on physical gestures.

About Motion Alternative

Designers, and Developers, can meet the WCAG 2.5.4 Motion Actuation (A)
requirement by ensuring that any interaction based on motion has a visual
element alternative in the Ul

In plain terms, if a feature is activated by moving the device, such as
shaking, tilting, or gesturing, then the same function must be available
through standard interface controls. The motion must be optional unless it
is essential.

The goal is to ensure that users can still fully use the interface without
relying on physical gestures. These applies to users who:

e Have limited motor abilities

e Cannot hold or move a device

e Use the interface in a fixed or mounted position
e Might accidentally trigger features via motion

Designers Guidelines:

1. Avoid motion-only interactions. Do not make motion gestures, such as
shake or tilt, the only way to:
e Undo actions (e.g., shake to undo)
e Navigate
e Trigger shortcuts or features

Accessibility Design Tools - Interaction Experience Page 142

Always pair motion interactions with a standard Ul control, such as a button
or menu option.

2. Provide redundant, discoverable Ul controls. For each motion-based
trigger:

¢ Include an on-screen button or an accessible keyboard or touch
equivalent
e Ensureitis visible, labeled, and reachable

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

3. Make motion features optional

e Allow users to disable motion-based input in the app or via
operational system settings
e Detect when motion sensors are unavailable or turned off

4. Consider platform and context

e OniOS and Android, users can limit or disable motion through
system settings (e.g., Reduce Motion)
e Apps should respect these preferences and not require motion

Exceptions

When Motion Can Be Required? Motion can be the only method if:

e Itis essential for the function (e.g., augmented reality app requiring
device movement)
e Itis part of a physical simulation that loses meaning if replaced

Accessibility Design Tools - Interaction Experience Page 143

Q
)
c
2
—_
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Examples

Manage list

Roll Dice

(O

(O

Figure 90: Example app mockup showing both a shake gesture to roll dice
and a button labeled” Roll Dice” as an alternative trigger.

Do: Ensure a visible “Shake the Dice” button is always present on screen as
an alternative.

Do Not: Make shaking the device the only way to roll the dice.

Accessibility Design Tools - Interaction Experience Page 144

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits
Benefits

Temporary Disabilities

All users

For people with temporary disabilities, (such as a broken arm, wrist sprain,
eye patch, or concussion, relying on device motion can be difficult or even
impossible. Having a visible alternative control means they do not have to
shake, tilt, or gesture with precision while recovering. This makes the
interface usable during periods of limited mobility, vision, or concentration,
ensuring that access to features is not blocked to people with short-term
conditions.

Without Vision

Screen Reading

Motion-based interactions, such as “shake to undo”, are not perceivable
through screen readers. Providing a visible alternative control ensures they
can activate the same functionality with standard navigation

Limited Cognition

Cognitive

Motion gestures can be hard to discover, remember, or perform
consistently. A visible button or toggle makes the interaction clearer, more
predictable, and less prone to errors.

Accessibility Design Tools - Interaction Experience Page 145

For Developers

Provide typical alternatives to motion-based triggers, such as additional
links and buttons, within the app.

References

Q
)
c
2
—
)
o
x
Ll
c
0
)
O
©
—
()
+—
[

WCAG 2.2

2.5.4 Motion Actuation (A)

Accessibility Design Tools - Interaction Experience Page 146

https://www.w3.org/WAI/WCAG22/Understanding/motion-actuation

Q
)
c
[}
=
)
o
x
Ll
c
0
3+
(S)
©
S
Q
=
[

Minimum Target Size

Make target sizes large enough for users to activate them using a pointing
device, such as a mouse or stylus, or through touch. Aim for 24 pixels when
minimum size is mandatory.

Component Variants

Minimum Target Size

B OO
ST 22 px

Figure 91: The annotation is used on components to indicate that the target
size fulfills the minimum of 24 pixels in both directions (x, y) and to assure
interactive elements do not overlap.

About Minimum Target Size

In WCAG 2.1, a target size of at least 44 x 44 CSS pixels was an AAA
requirement. WCAG 2.2 introduced a new AA requirement: targets must be
at least 24 x 24 CSS pixels, with some exceptions. The 44 x 44 size remains
a best practice. A large size of a target helps users activate actions more
easily by using a mouse pointer, pen, or touch. The larger a clickable area is,
the easier it is for users to reach an interactive element. The target size is
considered the region where the pointer, also called a hit area, will reach
the actionable element. The hit area of the interactive component can be
larger than the component itself, including the surrounding whitespace, as
in the case of an icon button or checkbox. Overlapping hit areas must be

avoided.
Be ¢ & =
R
44 px 44 px i >44 px i

Figure 92: Examples of component sizes with hit areas larger than the
minimum 24x 24 pixels

However, target size can vary depending on context, and some exceptions
should be considered during the design:

e Text links in paragraphs or body text maintain the same size as the
surrounding content.

Accessibility Design Tools - Interaction Experience Page 147

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

e Helpicons embedded in labels or sentences are considered part of
the content and are not required to meet the minimum target size.

e Equivalent targets performing the same action on the same page: if
one target meets the minimum size, the others are not required to
do so.

User Benefits of Larger Targets:

« Users with limited dexterity: Users with fine motor control issues or
hand tremors benefit from large targets, which allow them to interact
comfortably and accurately using a mouse or touch device.

« Users of touch devices: Users with larger fingers, or who use toes,
knuckles, or parts of fingers, benefit from larger targets. This also
applies to users interacting with devices while in motion, as larger
targets improve precision.

« Users with low vision: Larger targets make it easier to identify
actionable elements among other content.

Mobile Guidelines:

« Native applications may follow platform-specific SDK requirements
for minimum tappable areas. For example:

o i0S: 44 by 44 points
o Android: 48 by 48 pixels

» Following these guidelines helps ensure targets are easy to interact
with across devices.

Examples

Dec 05, 2019

< December 2019 >

Sun Mon Tue Wed Thu Fri Sat

22 28 29 30 31 1 2 3

24 Y .
11 12 13 14 16 17

25 18 19 20 21 22 23 24

The circles are smaller than the planned target
area making this control fulfill the minimum target
Size.

26 25 26 27 28 29 30 1

Figure 93: Calendar month view with two minimum target size annotations on
day tiles, showing that the minimum target size is met

Do:

Accessibility Design Tools - Interaction Experience Page 148

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
Q
=
[

e Keep circles touching or separated.
e Adjust the size of the annotation to fit your components when
placed side by side or stacked vertically.

Do not:

e Allow the circles representing the minimum target size to cross or
overlap. This creates an accessibility violation.

Shared Benefits

Temporary Disabilities

All users

Situations like using a device with one hand, wearing gloves, or interacting
in motion (e.g., walking) reduce precision. Users with temporary or
situational disabilities also benefit from larger targets. They are easier to hit
in challenging real-world scenarios, improving usability for everyone.

Limited Cognition

Cognitive

Small or densely packed targets can create confusion or require greater
focus and precision, which may increase errors. Users with cognitive or
learning disabilities also benefit from larger, well-spaced targets reducing
cognitive load and help users to make clear choices more confident.

Vision and Color Limitation

i Visuals

Larger targets are easier to locate visually, especially for users who rely on
screen maghnification tools that reduce visible context. Users with low vision
also benefit because larger targets reduce the effort required to aim or
locate interactive elements and help prevent accidental taps or clicks.

Accessibility Design Tools - Interaction Experience Page 149

For Developers

Verify that the dimensions of all active framework elements fall within the
recommended minimum sizes according to I0S and Android development
guidelines. Additionally, ensure that the spacing between any two active
elements meets the minimum distance requirements.

References

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

WCAG 2.2

2.5.8 Target Size (Minimum) (AA)

Accessibility Design Tools - Interaction Experience Page 150

https://developer.apple.com/design/human-interface-guidelines/accessibility
https://support.google.com/accessibility/android/answer/7101858?hl=en
https://www.w3.org/WAI/WCAG22/Understanding/target-size-minimum

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Journey

Plan an exploratory journey by outlining the steps required to interact with
the component and navigate across pages to complete a task.

Component Variants

Journey Flow Step Name - Component

Ce Step name (component) D

Figure 94: Indicates the name of a step in a component flow designed to be
applied consistently in various design use cases.

Journey Flow Step Name — Page/Dialog

@ Step name (page/dialog) 9

Figure 95: Indicates the name of a step in a business use case flow designed
for a user to start, conduct, and conclude a task across pages and overlays.

Journey Direction Flow

Trigger Destination

¢ [Name] § [Name] >

Figure 96: Indicates the name of a step in a direction flow designed to be
applied consistently in various design use cases.

About Journey

Journeys are an excellent way to describe navigation flows and
interactions, at both the control and application levels. When an element is
interactive and a trigger annotation is used, it is important to precisely
document the flow of actions, capturing all steps of the journey.

In journey annotations, the trigger refers to the element or action that
initiates a step, such as a button labeled “View Profile”, while the
destination is the resulting screen, dialog, or component that follows, such
as a profile details page.

Documenting both trigger and destination ensures consistent labeling,
reinforces the user’ intent when the destination opens, and maintains clear
wayfinding. This practice helps reduce confusion and supports inclusive
experiences for users who rely on predictable flows, including those using
screen readers and people with cognitive disabilities

Accessibility Design Tools - Interaction Experience Page 151

Actions should be intuitively mapped to meet both visual requirements for
sighted users, such as focus and states indicators and interactive
requirements for all users such as vertical and horizontal navigation on
pages or tables and announcements for screen reader users.

Journeys also clarify flows among screens. Before reviewing all the
elements used to design a page, it is essential to understand the journey
and associated triggers. This approach contributes to a more accurate
accessibility review of screens and their content.

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Examples

Co Open Date Picker (Idle state) D

Select date or range

V
mm dd, yyyy =] I i 020 Component: DatePicker
i

Figure 97: Step name annotation indicating that ALT + Arrow Down keys and
the F4 key opens a date picker helper dialog

Ce Navigate calendar D

Dec 05, 2019
< @Decem ber @lg >

Sun Mon Tue Wed Thu Fri Sat

22.28 29 30 .. 1: 2 3

e

]

[]

: 6 7 8 9 10

)

24 11 12 13 14 15 16 .
25 18 19 20 21 22 23 24

26 25 26 27 28 29 30 1

<« Component: Calendar

Figure 98: Step name annotation indicating that the Tab key navigates
between functionalities, while Arrow keys navigate dates within the calendar

Accessibility Design Tools - Interaction Experience Page 152

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Select date range or ’
Select a single date
Dec 05, 2019

Sun Mon Tue Wed Thu Fri Sat

22 28 29 30 31 1 2 3

23 4 10

-_;-
~
=]
=]

24 11 12 i3 14 15 16 17

25 18 19 20 21 22 23 24

26 25 26 27 28 29 30 1

. ' .

Figure 99: Step name annotation indicating that Shift + Arrow keys are used
to select a range. Enter selects a single element. The initial focus position
should be put to “today” by default.

I GEED @ Edit Recipe

Recipes

Focus Restore
Back to Trigger

Action Trigger
®==% Close and Back to Start of the Journey

Figure 100: Journey direction flow annotation indicating the opening and
closing of dialog screens

Accessibility Design Tools - Interaction Experience Page 153

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

Shared Benefits

Temporary Disabilities

All users

For users with a broken arm, eye strain, fatigue, or even situational
limitations, such as like using a device one-handed while carrying
something, a predictable and minimal journey means less effort, fewer
repeated attempts, and reduced frustration.

Vision and Color Limitation

® \isuals

For low-vision users or screen maghnifier users, knowing the trigger
destination ensures they do not waste time scanning unrelated areas of the
interface.

Without Vision

Screen Reading

For blind screen reader users, it ensures labels and announcements stay
consistent, so the outcome of an action is clear and navigable without trial
and error.

Limited Cognition

Cognitive

Journey annotations make navigation flows predictable and consistent,
reducing cognitive load. When it is clear what will happen after pressing a
button or link, users do not have to keep extra steps in working memory or
deal with unexpected outcomes. This builds trust and confidence in
completing tasks without confusion.

Accessibility Design Tools - Interaction Experience Page 154

For Developers

Scrutinize workflows by discussing with the Designer which trigger
elements navigate to each individual journey step.

References

WCAG 2.2

Q
)
c
2
-
)
o
x
Ll
c
0
3+
O
©
S
()
=
[

1.3.5 Identify Input Purpose (AA)

2.4.8 Location (AAA)

2.5.3 Label in Name (A)

4.1.2 Name, Role, Value (A)

4.1.3 Status Messages (AA)

“l love how everything is thought of from the
various accessibility topics especially the
keyboard and screen reader annotations.”

Aisling Noone — User Experience Designer

Accessibility Design Tools - Interaction Experience Page 155

https://www.w3.org/WAI/WCAG22/Understanding/identify-input-purpose.html
https://www.w3.org/WAI/WCAG22/Understanding/location.html
https://www.w3.org/WAI/WCAG22/Understanding/label-in-name.html
https://www.w3.org/WAI/WCAG22/Understanding/name-role-value.html
https://www.w3.org/WAI/WCAG22/Understanding/status-messages.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

Screen Reading
Experience

Imagine navigating a screen with only your hearing. What
turns a simple list of words into a clear, navigable experience?
The answer is a well-designed structure. This allows screen
reader users to build a mental map, organizing page elements
into an efficient experience.

This chapter shows designers how to implement screen reader support and
create an inclusive experience for everyone, especially people who are blind.

The Inclusive Screen Reading Experience

Design your application and Ul components to be fully understood and
operated through a screen reader. This is essential for users who rely on
screen readers, allowing them to perceive and interact with content that
would otherwise be unavailable

Provide clear labels and text alternatives for all interactive and
informational elements. For a screen reader user, an unlabeled button or a
generic link like "Click Here" is ambiguous and confusing. Explicit labels for
controls and descriptive text for images give every element a clear
purpose, transforming a visual interface into a comprehensible auditory
experience. This clarity benefits all users by reducing ambiguity and making
the interface more predictable and easier to learn.

Structure content logically with headings, landmarks, and a consistent
reading order. A well-organized page allows screen reader users to quickly
grasp its layout and navigate efficiently. Instead of listening to everything
sequentially, they can use headings to skim for content or use landmarks to
jump directly to major sections like the "main" content or "navigation" bar.
This semantic structure also creates a stronger visual hierarchy that makes
content easier to find and understand for everyone.

Accessibility Design Tools - Screen Reading Experience Page 156

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Principles

Blindness

Persona: Bob

“l am legally blind, and | cannot see light
or shapes. | use digital products with a
screen reader to explore and operate
digital products. My preferred interactive
tools are the keyboard & touch in mobile
devices.”

This user group represents individuals who are legally blind and others
with significant vision impairments. They rely on screen readers and
assistive technologies that convert on-screen content into speech or braille
readers and prefer to interact via keyboard and touch interactions to
navigate and operate the digital product. Highly sequential, linear, and well-
structured content is key to support usability and comply with accessibility.
These users receive clues from the system by listening to announcements
made by the screen reader. As a result, these users listen to many words
per day to interact with digital products, which could be stressful.

Some users experience vision loss that can get worse over time. This may
happen because of medical conditions such as glaucoma or diabetic
retinopathy.> 4

There are two main types of blindness:

« Total Blindness: People with total blindness cannot see anything
and rely fully on assistive technologies like screen readers, braille, or
audio and tactile feedback to navigate the world.*?

« Legal Blindness: Defined as 20/200 vision or worse in the better eye
(with correction) or a visual field of 20 degrees or less, people who
are legally blind can detect shapes and brightness but have trouble
seeing details. They often use assistive tools like screen readers to
help with daily tasks.!?

Accessibility Design Tools - Screen Reading Experience Page 157

Some statistics:

e Global: 2.2 billion people have a near or distance vision impairment,
where 36 million people are blind, and 217 million have moderate to
severe vision impairment (WHO Vision Fact Sheet, 2023).

Situational & Temporary Disabilities

By including situational and temporary disabilities into this disability group,
we help design teams address challenges that might not be permanent but
still impact user experience under certain conditions.

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

Situational and temporary:

e Dark or bright environments: Difficulty seeing due to temporary lighting
conditions, such as extreme glare or darkness.

e Temporary blindness: Due to events like a sudden injury or temporary
eye condition (e.g., eye infection or trauma).

General Design Tips

1. Accurate and Complete Announcements:
Screen readers depend on accurate labels and programmatic
associations to convey content. Missing, unclear, or duplicate labels can
leave users confused or unaware of available options.

Design Tip: Ensure every interactive or informative element (e.g,
buttons, links, form fields, icons, images) has a clear, unique accessible
name using appropriate attributes like aria-label, aria-labelled by, alt, or
semantic HTML elements (e.g., <label>).

2. Clear Page Structure:
Without a well-defined heading hierarchy or landmarks, screen reader
users may struggle to understand the layout or jump to relevant
sections.

Design Tip: Use semantic headings (<h1>-<h6>) to establish a clear
content structure and add ARIA or native landmarks (<main>, <nav>,
<header>, <footer>) to support orientation and quick navigation.

3. Logical Reading Order:
If content is visually arranged in one way but coded in another, the
screen reader may read it out of sequence, leading to confusion. Some
screen reader users can still perceive a certain number of visual
elements in the interface.

Accessibility Design Tools - Screen Reading Experience Page 158

Design Tip: Ensure the DOM (document order) reflects the visual and
logical order of content. Avoid using CSS tricks that misalign reading and
focus order.

4. Hybrid Navigation (Focus + Reading Order):
Challenge: Blind users often combine keyboard navigation
(Tab/Shift+Tab) with arrow-key reading. Inconsistent focus management
or skipped elements can break this experience.

Design Tip: Maintain a predictable focus order and supplement it with
reading-friendly design. Announce state changes, use ARIA roles
(role="alert", aria-live) to communicate updates without requiring focus
shifts.

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

5. Unique and Contextual Labels for Repeating Elements:
Repeating components (e.g., icon buttons, links, or lists) with identical
labels, confuses screen reader users.

Design Tip: Provide context to each instance, e.g., "Edit profile" vs. "Edit
address", using visible or invisible text tied to neighboring content using
the aria-labelledby property.

6. Supplementary Descriptions for Complex Elements:
Visual-only cues like color or icons are not announced by screen readers
unless explicitly labeled to indicate the color semantic.

Design Tip: Use aria-describedby or to associate
additional info with elements like buttons or charts, ensuring screen
reader users receive the same guidance as sighted users.

Accessibility Design Tools - Screen Reading Experience Page 159

Annotations

Screen Reading Annotations

This checklist helps designers to remember the important aspects of
accessibility that should be addressed in the design phase.

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Screen Reading Experience Checklist

Reading Order
Label

Description

Live Message
Heading
Landmark

Page Title

Role and Properties
Speech Output
Audio Control
Audio Description
Language

000000000000

Accessibility Design Tools - Screen Reading Experience Page 160

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Reading Order

Indicate and number the sequence of Ul elements on the layout, including
hidden elements when applicable, that must be logically perceived during
screen reader announcements.

Component Variants

Reading Order

@

Figure 101: Indicate order of Ul elements to be announced by the screen
reader in reading navigation by using this annotation with numbers that
correspond to the reading order.

Reading Order (with add. inner order)

®

Figure 102: Ul elements that require an unknown number of further inner
navigation/swipes, such as toolbars, breadcrumbs and tables, should be
annotated with the Reading Order with additional inner order variant.

Reading Scope

0

Figure 103: When appropriate, enclose multiple Ul elements to be read
together by the screen reader in reading navigation, which reduces reading
navigation effort.

Reading Flow

Reading Flow: Left to right

Figure 104: Indicate a general reading navigation flow direction, left to right or
top to bottom (not depicted here), when individual annotation may not be
required.

Accessibility Design Tools - Screen Reading Experience Page 161

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

About Reading Order

The reading order is the sequence of Ul elements announced when
navigating between elements with the screen reader (in opposite to that,
the Focus Order is the sequence of focusable Ul elements when using TAB
key, or Arrow keys in interactive lists).

On desktops, this will be done in a special reading mode of assistive
technologies (called “virtual mode”, “browse mode” etc.). The user will use
an assistive tool to navigate the Ul elements using the up and down arrow
keys. On mobile, the reading order is known as swipe order and navigation
is done using swipe gestures.

The designer needs to identify the logical Reading Order of elements
including texts, images and interactive controls. A logical order of elements
enhances the understanding of the content and its context. Use the
appropriate annotation variation to identify a single Ul element, a group
with inner navigation, or a group of content that should be announced
contiguously by the screen reader. This helps to form logical contexts (what
belongs together is spoken together) and reduces reading navigation effort.

The Reading Scope annotation should be used to represent Ul elements
that require further inner navigation (like toolbars, breadcrumbs and
tables) where the total number of steps inside is unknown or not important
in the current context.

The two variants of Reading Flow represent the default navigation
directions. Use these when annotating individual annotation sequences is
not required in your design case.

SAP Figma Plugin

The SAP Figma Plugin “Reading Order” helps designers annotate their
screens identifying relevant focus order sequence.

Accessibility Design Tools - Screen Reading Experience Page 162

https://www.figma.com/community/plugin/1072563579293318294/accessibility-design-tools-second-edition

Examples

@ One Kart @ Q
@ Recent Purchases Recenl Purchases /

(s)Recent Purchases Manage
@ Loyalty Program

QO
@)
c
()
=
()
o
X
L
on
£
O
©
QO
0
c
()
()
P —
O
()]

Fulfilled Orders e
1 3 Good

@ Payment Methods Total | EUR Target Experiences
1,500K
564 A . Total] Frustrated
@ Preferred Web-Store Deviaton Points Experiences
Q1, 2018 -89.75%

@Last Purchase Manage

Sunglasses

BARCUR Vintage Womens Sunglasses Polarized "

Walnut Rimless Square Luxury Sun Glasses

@ | Awaiting Delivery
Preferred Social Media @ Reviews @ Manage

On January | bought a Bag to board
a small plane that fit perfectly
Instagram 22.89K Views
@ @ This is my experience with a termo
Instagram pump | purchased on Shop.com...
@ Manage Facebook 7.35 Views

Figure 105: Reading sequence using reader keys or swipe gestures should
follow a logical order and should respect the logical nesting of grouping
containers in Ul. Text belonging to a common context should be contiguously
(11, 12, 15). Components with predefined inner reading orders but of
unknown number are indicated with the Reading Order + annotation (24).

Accessibility Design Tools - Screen Reading Experience Page 163

Q
O
5 Grocery List Grocery List
E Select ingredients you wish to buy Select ingredients you wish to buy
o
i § =
£ || selectall @ || Selectall
2 g - =
o — o — 1 -
-c% a u Pineapple @ _ Pineapple
2 2
c E._ D Banana @ D Banana
Q [
) o0 o
3} 5 || watermelon @ || Watermelon

Add 0 Add
=l Cancel Cancel

Reading Flow: Left to right

Figure 106: Default Reading order flow indication for a simple dialog. In this
case, using Reading Flow annotation is like annotating individual Reading
Order steps and saves considerable work, therefore it is preferred and
recommended that the content follows a natural flow.

Accessibility Design Tools - Screen Reading Experience Page 164

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Shared Benefits

Temporary Disabilities

All users

A clearly structured, easily perceivable and easy to read Ul benefits all
users. Audio feedback is generally helpful in situations where users are not
looking at the user interface since they are occupied with other tasks.

For Developers

Reading order, during arrowing with screen readers in HTML or swipe next
operations on mobile devices, is established in all technologies by layout
and content node element order and nesting.

Always make sure that elements that form a common context are adjacent
in layout and not distributed between different containers, except if
presented in an extra control context for this purpose (e.g., row/columns in
tables).

Web Development:

By combining text that belongs together in one larger DOM Node

<p>
Text 1
Text 2
Text 3
</p>

Note: A swipe or arrowing in reading mode to the div will read multiple
items at once

<div role="group” aria-label="Text 1 Text 2 Text 3”>
Text 1

Text 2

Text 3

</div>

Fallback: Concatenating all inner info in an aria-label of the container

Mobile Framework Developer:

Accessibility Design Tools - Screen Reading Experience Page 165

i0S

Reading Order depends on view construction

VStack (alignment: .leading) {
Text (landmark.description)
.font (.subheadline)

HStack (alignment: .top) {
HStack (alignment: .top) {
Button (action: {}) {

Text ("Route")

}

.accessibility(label: Text("Plan a route"))

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Spacer (minLength: 10)
Button (action: {}) {
Text ("Website")

}

.accessibility(label: Text ("Visit website"))

.accessibilityElement (children: .combine)

See Building layouts with stack views | Apple Developer Documentation

Android

Group content to be read at once in ConstrainedLayout or LinearLayout

<ConstraintLayout
android:id="@+id/song data container"
android:screenReaderFocusable="true">
<TextView

android:id="@+id/song title"

android: focusable="false"
android:text="@string/my song title" />
<TextView

android:id="@+id/song artist"

android: focusable="false"
android:text="@string/my songwriter" />
</ConstraintLayout>

Use AccessibilityTraversal methods to change default left to right swipe
order

Accessibility Design Tools - Screen Reading Experience Page 166

https://developer.apple.com/documentation/swiftui/building-layouts-with-stack-views

volupButton.setAccessibilityTraversalAfter (myView.findViewBy
Id(R.id.remote0) .getId());
voldownButton.setAccessibilityTraversalAfter (myView.findView
ById(R.id.volup) .getId())
chaineplusButton.setAccessibilityTraversalAfter (myView.findV
iewById(R.id.voldown) .getId());
chainemoinsButton.setAccessibilityTraversalAfter (myView.find
ViewById(R.id.chaineplus) .getId());

(O}
O
C
@
| —
(&)
o
x
L
on
£
©
(48]
[J)
o
C
(O}
Qo
-
O
()]

See View | API reference | Android Developers

References

WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

1.3.2 Meaningful Sequence (A)

Accessibility Design Tools - Screen Reading Experience Page 167

https://developer.android.com/reference/android/view/View#setAccessibilityTraversalAfter(int)
https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/meaningful-sequence.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Label

Provide labels, visible or invisible, to identify and describe the purpose of
Ul elements for all users and screen readers.

Component Variants

Visible Label (Relationship)

0 Label
For: Component Name

Figure 107: Use this variant to reinforce the presence of a visible label that is
tied to another Ul element, like input field and label

Invisible Label

?

Figure 108: When a visual text cannot be used in the design, the Invisible
Label variant is used to define an element purpose providing context to
blind users

About Label

A label is the text or visual indicator that names or describes the purpose
of a user interface element, such as a form field, button, or checkbox. It
helps all users, including those using assistive technologies, understand
what the element does or what information is expected.

Labels can be visible or invisible. Visible labels are easily recognized in
forms as they are positioned typically above or adjacent to its interactive
component. If you have a choice, use a visible label. If this is not possible,
use an invisible label associated with a control to ensure that screen
readers will announce the purpose of the element. An invisible label is
used in minimalist designs to reduce visual clutter, such as when icon-only
buttons are shown to sighted users, but it is essential to include an invisible
label so that screen reader users, who are blind or have low vision, can
perceive the purpose of the control. It ensures that the functionality
remains understandable and operable for all users, even when visual text is
hidden.

Accessibility Design Tools - Screen Reading Experience Page 168

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

For sighted users, visible labels should be straightforward and aligned with
common expectations, while for blind users, invisible labels should
supplement visual context without redundancy. This approach ensures an
inclusive experience, enabling all users to navigate interfaces efficiently
and confidently.

Use cases where invisible labels are accepted are:

e Combined input fields like Address (humber and street)
e List of checkboxes

e Icon button

e Semantic buttons

The content used in an invisible label should also be provided as a tooltip
to ensure it is accessible to sighted users, so that essential context is not
exclusive to blind users but available to everyone.

Good labels improve usability, accessibility, and reduce user errors. In
design, always ensure labels are:

¢ Visible and placed close to the element they describe (e.g., above or
beside a text field).

e Consistent in wording and placement.

e Programmatically associated with the element for screen readers, via
label for in HTML or aria-label when appropriate.

Do not use placeholders as labels. Once the user enters a value, the “label-
placeholder” will be gone, leaving users to wonder what information was
requested in the input field.

When crafting labels, UX writers should prioritize clarity, ensuring that
labels are immediately understandable without requiring users to interpret
vague or ambiguous wording. Avoid abbreviations unless they are widely
recognized, as unfamiliar shorthand can create confusion and increase
coghnitive load. Every label should be concise yet descriptive enough to
provide clear meaning, reducing the mental effort needed to understand its
purpose.

Accessibility Design Tools - Screen Reading Experience Page 169

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Here are some tips for UX writers to deliver a clean screen reader speech
output:

e Use plain text on labels.

e Do not use acolon (") as this is a decorative style - If needed, use it
separated from the label.

e Use caps only on the first letter of the first word to secure a smooth
tone of voice.

Labels are also useful to provide contextualization, for instance, on
repeating Landmarks. The Landmark Region is often repeated in a page,
which requires a contextualization to help blind users distinguish them.

Examples

Single Reference Annotations

Form Title

Group Header

D Label . > _ peE— y E— = 11
For: Textbox Name: John Miller 0 Invisible Label | ‘
Postal Code / City: 123.4550'”‘”5“3'e Label | e O ¥
meaese | i Street i
Street / No.: Mainstreet ‘ 1618 ‘
Group Header
Purchase Order:)‘ 0 invisible Label | 0 Invisible Labe ;
FEE RS : Valid from Date | | Time 1

e O P e B Ty PN) e W T T ——— —

A d
Valid From Date/Time: ‘ 01/01/1970 00:00 ‘

Figure 109: Different fields of a combined input field are presented with one
unique visible label. Invisible labels help to clarify the purpose of the single
fields.

Accessibility Design Tools - Screen Reading Experience Page 170

Label Scope Annotations

(O}

@)

C

9

o OLabel

< For: CheckboxGroup

'Q,JD Banana cake Banana cake

= v

2 O Banana O Banana

[J)

@ O Flour O Flour

% OE @ Egos ‘40 Invisible Label

S 883 g8 :Banana Cake |

n O Chocolate O Chocolate | T
O Baking powder O Baking powder

Figure 110: Two ways to annotate group labelling: Group of checkboxes
identified by visible label relation or invisible label scope annotations
assigning in both cases group header text.

 Label
For: Table

Core Competency + 08
Competency Name Weight Target Weight Rating Gap Comment
Time management 20% 3.0 30% Unrated v 0 (] >

Time management 10% 3.0 50% Unrated v 0] >

Figure 111: Visible table titles must be associated as label with
corresponding table

0 Label

For: Switch

Sound:

Figure 112: Label-control association for a custom Android switch
component

Accessibility Design Tools - Screen Reading Experience Page 171

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Shared Benefits

Temporary Disabilities

All users

Labels provide clarity and efficiency by making controls easy to
understand at a glance. They reduce mistakes, especially in forms, and they
stay visible when placeholder text disappears.

Limited Mobility

Interactions

Labels support voice input and dictation by giving commands a clear
target. By reducing repeated actions and guesswork, labels make
interactions less tiring for users with limited movement.

Limited Cognition

L Cognitive

Labels reduce cognitive load by keeping instructions visible, so users don’t
have to remember what to type once they start.

For Developers

Labels support the Info and Relationships principle by clearly linking Ul
controls to their purpose. They serve as an accessible name or description,
whether visible or hidden (e.g,, using aria-label), ensuring that form controls
and inputs are understandable to all users.

Ensure an invisible label is informed where the design uses a limited
number of words to provide context.

Accessible Name

Accessible Name is the Primary Identifier used by assistive technologies to
identify an element. It is given to Ul elements as a supplement to create

Accessibility Design Tools - Screen Reading Experience Page 172

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

meaningful labels associated to meaningful visual cues where needed (like
icons or section areas). Examples of Accessible Names are “aria-label” for
custom names when there is no good visible label, “aria-labelledby” to
reference repeating instances with an existing text to make them unique in
the Ul - instead of duplicating content.

Key Differences Between ‘aria-label’ and ‘aria-labelledby’

Feature aria-label aria-labelledby

When to use When there is no When you can reuse
visible text to an existing visible
describe the element as the label
element

How it works Provides a custom, References the text
standalone name of another element

Example usage <nav aria- <nav aria-
label="Main labelledby="menu-
Navigation"> heading">

Downside Can create Requires maintaining
inconsistencies if not | correct ID references
aligned with visible
Ul

Ul technologies have different labeling techniques but there are only three
basic principles to denote the relationship between a label and a control:

1. Inclusion: Label and control form a common context, which is mostly
represented by control having a label text attribute or markup that
encloses label and control together

2. Forward labelling: Separate label control has an id pointer to id of a
different control (“label for=" approach in HTML)

3. Backward labelling: Control has an id pointer to id of a control used as a
label (WAI-ARIA approach)

To apply correct labelling techniques for some base technologies, read the
respective info in the links given below:

Web Development

HTML:
H44: Using label elements to associate text labels with form controls | WAI |
W3C

WAI-ARIA:
ARIA16: Using aria-labelledby to provide a name for user interface controls

| WAI | W3C

Accessibility Design Tools - Screen Reading Experience Page 173

https://www.w3.org/WAI/WCAG21/Techniques/html/H44
https://www.w3.org/WAI/WCAG21/Techniques/html/H44
https://www.w3.org/TR/WCAG20-TECHS/ARIA16.html
https://www.w3.org/TR/WCAG20-TECHS/ARIA16.html

Mobile Development

iOS:
accessibilityLabel | Apple Developer Documentation

Android:
Principles for improving app accessibility | App quality | Android

Developers
If you are using an Ul framework that possibly encapsulates one or more of

the methods above, look for respective framework API property
documentation instead.

QO
@)
c
()
=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

References

WCAG 2.2 Reference

1.1.1 Non-Text Content (A)

1.3.1 Info and Relationships (A)

1.3.5 Identify Input Purpose (AA)

2.4.6 Headings and Labels (AA)
2.5.3 Label in Name (A)

3.3.2 Labels or Instructions (A)

Accessibility Design Tools - Screen Reading Experience Page 174

https://developer.apple.com/documentation/uikit/uiaccessibilityelement/accessibilitylabel
https://developer.android.com/guide/topics/ui/accessibility/principles#label-elements
https://developer.android.com/guide/topics/ui/accessibility/principles#label-elements
https://www.w3.org/WAI/WCAG22/Understanding/non-text-content.html
https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/identify-input-purpose.html
https://www.w3.org/WAI/WCAG22/Understanding/headings-and-labels.html
https://www.w3.org/WAI/WCAG22/Understanding/label-in-name.html
https://www.w3.org/WAI/WCAG22/Understanding/labels-or-instructions.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Description

Describe images, add invisible descriptions for screen reader users and
relate visible descriptions to other Ul elements.

Component Variants

Visible Description (Relation)

@ Description

For: component name

Figure 113: Use this variant to describe the invisible description and its
relationship to the element

Invisible Description

Figure 114: Use this variant to describe the invisible description for an
element

Decorative Element

& Decorative Element

Figure 115: Use this variant on visual Ul elements to indicate that no screen
reader output should be generated for those

About Description

Use Description to explain images. These descriptions are very popular
and widely used to fulfill accessibility for a long time. They are known as
Alternative Text (ALT Text).

Most of the time the description will be an Invisible Description to be
announced by the screen reader.

But a description can also be a Visual Description, which gives all users
access to the same content, avoiding privileged information shared only
with blind users.

Besides images, visible descriptions can also be used as complementary
information next to form fields. This description appears as a static text part

Accessibility Design Tools - Screen Reading Experience Page 175

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

of the interactive Ul control. For example: Label <Quantity>, Value <3>,
Description <kg>.

Decorative images do not need any description and are to be
hidden from screen readers.

When photos, illustrations or similar non-text content have an
important part in the context, they must be described to allow
users of screen readers to understand the complete
information.

Image of text must be described containing the visible text to
allow users of screen readers to have equal access to
information seen by sighted users.

Fun
Dog

Accessibility Design Tools - Screen Reading Experience Page 176

QO
@)
c
()
=
()
o
X
L
on
£
O
©
QO
0
c
()
()
P —
O
()]

Examples

My Profile bt

Name *

Enter name

Height Weight

@ Description E Description

For: TextBox For: TextBox

Address

Enter name

City Zip Code

Coaching Time

@ Description
For: TextBox

€ | Hour

Preffered Attractions

T e A s
{[3 Invisible Description

{Eifel Tower seen from |
ithe bridge framed by fall ;

itrees with yellow leaves ;
""""""""""""""""""""""") Cancel

[4

Figure 116: Description relations and image descriptions
Custom object status descriptions can be added as invisible description.

Delivery
memmiis 7 ,
@ Invisible Description
 Positive Value |

Figure 117: Invisible Description Annotation used for the positive value of a
status.

Accessibility Design Tools - Screen Reading Experience Page 177

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

To Be Selected

a Invisible Descnp‘uon
Negat:ve Value

Figure 118: Invisible Description Annotation used for the negative value of a
status

E &= Decorative Element

Figure 119: Decorative images must not have any descriptions and are to be
hidden from screen readers by technical means

Fun @ Invisible Description
Dog : Yellow square with black text "Fun Dog"

Figure 120: Image of text must be described including the visible text

Shared Benefits

Temporary Disabilities

All users

Visible descriptions provide context that benefits everyone, ensuring
transparency and avoiding situations where important information is only
available to some. For example, visual descriptions next to form fields
clarify values, units, or instructions, supporting better usability and reducing
errors.

Accessibility Design Tools - Screen Reading Experience Page 178

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

For Developers

Ul technologies have different techniques for assigning descriptions, but
there are only two basic principles to denote the relationship between a
description and a control:

1. Inclusion: Description and control form a common context, which is
mostly represented by control having a description text attribute or
markup that encloses description and control together

2. Backward describing: Control has an id pointer to id of a control used as
a description (WAI-ARIA approach)

If you are using an Ul framework that possibly encapsulates one or more of
the methods below, look also for respective framework API property
documentation.

Web Development
Visible/Invisible descriptions:

By using the “aria-describedby” reference attribute (“backward” describing)

<label for="il”>Weight</label>sp<input id="i1” aria-
describedby="d1"/>
kg

Invisible descriptions: By using the HTML alt attribute OR the “aria-
description” attribute OR by additional “hidden” DOM text (“direct”
describing)

o=

style="background-image: eiffel.png”
aria-description="Eiffel tower in autumn on a sunny day”>%§
<div>

Assembly Option

To be selected Qﬂ Negative Status§£

</div>

Mobile Development

iOS:
Descriptions via accessibility hint

VStack (alignment: .leading) {
Text (landmark.description)

Accessibility Design Tools - Screen Reading Experience Page 179

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

.font (.subheadline)

HStack (alignment: .top) {

HStack (alignment: .top) {

Button (action: {}) {

Text ("Route")

}

.accessibility (hint: Text ("Navigates to next screen to plan
a tracking route"))

Spacer (minLength: 10)

Button (action: {}) {

Text ("Website")

}

.accessibility (hint: Text ("Open the website of the park’s
visitor information"))

}

}

}

.accessibilityElement (children: .combine)

See accessibilityHint | Apple Developer Documentation

Android:
Describe images

<ImageView
android:src="@drawable/my image"
android:contentDescription="@string/my image description"

/>

Give additional object information

<TextView

android:contentDescription="To be selected - Negative Value"

/>

Identify decorative images

<ImageView
android:importantForAccessibility="no”
android:contentDescription=“null”

/>

Describe a complex context

Accessibility Design Tools - Screen Reading Experience Page 180

https://developer.apple.com/documentation/uikit/uiaccessibilityelement/accessibilityhint

containerView.setContentDescription ("3 mails not read,
button") ;

containerView.setImportantForAccessibility (View.IMPORTANT FO
R_ACCESSIBILITY YES);
mailImageView.setImportantForAccessibility (View.IMPORTANT FO
R ACCESSIBILITY NO);
infobulleTextView.setImportantForAccessibility (View.IMPORTAN
T FOR ACCESSIBILITY NO;

See: View | APl reference | Android Developers

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

References

WCAG 2.2 Reference

1.1.1 Non-Text Content (A)

1.4.5 Images of Text (AA)

Accessibility Design Tools - Screen Reading Experience Page 181

https://developer.android.com/reference/android/view/View.html#attr_android:contentDescription
https://www.w3.org/WAI/WCAG22/Understanding/non-text-content.html
https://www.w3.org/WAI/WCAG22/Understanding/images-of-text.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Live Message

Provide clear and concise updates for dynamic content changes, such as
form errors, status updates, or confirmations, using live regions. Ensure the
message is announced without moving focus or disrupting the current task
of the user.

Component Variants

Visible Message

@ Live Message

Figure 121: Use this variant to indicate that this section on the Ul represents a
visible live updated message

Invisible Live Message

0
'

»

Figure 122: Use this annotation to indicate an invisible message and its
relationship

About Live Message

Visible messages are also perceived by non-blind people and contribute to
a usable experience. Messages are triggered and presented after user
interaction or system updates. They are usually visible but often fade away
in a few seconds, like toast messages.

An essential aspect of toast messages is that, whenever they appear, the
focus remains where it was before the message was triggered. Screen
readers should be prepared to announce visible messages (like in message
areas of business applications) while keeping the focus on the current Ul
element; focus does not move to the message. This is important, especially
when a message disappears in a few seconds.

Dialog messages, on the other hand, will change focus positioning the user
into the message.

Invisible Messages happen on a few occasions. Some examples are
messages that should announce search results, filter results, feed list
additions or auto-save. These use cases may not provide one specific
visual feedback. Instead, the state of existing Ul elements should react and

Accessibility Design Tools - Screen Reading Experience Page 182

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

be announced in a way that is easily understood by both: blind and visually
abled users.

Remember:

e When messages pop up, focus does not change. This applies to toast
messages. Focus remains on the element the user was working on
before the message appears. This rule does not apply to dialog
messages.

e Messages that fade away in a few seconds is hot recommended.
Neurodivergent users need extra time to read the message. It is best to
give control to the user to dismiss the message when the user ends the
reading.

Alert sounds alone create a barrier for blind users because the information
is not conveyed in a way they can perceive. If a sound, like a beep, occurs
without a visible or programmatically exposed message, screen reader
users will not know what happened. WCAG indirectly addresses this in
Success Criterion 4.1.3 Status Messages (AA), which requires that status
updates (e.g., “message sent,” “connection lost,” “hew message received”)
be exposed to assistive technologies, typically through mechanisms like
ARIA live.

ARIA live regions are critical for accessibility, but can be overlooked during
the design phase, can cause confusion or loss of important updates for
screen reader users. Application and component designers should specify
ARIA live Regions for these three reasons:

1. Screen readers do not “see” visual changes. If a success message, error, or
dynamic update appears visually (e.g., a toast, notification bar, or inline
message), it will not be announced unless it is placed inside a properly
configured ARIA live region.

2. Developers cannot guess your intent. If your design does not explicitly
indicate which dynamic updates are important for screen reader users,
they may not implement aria-live, or may use the wrong priority (e.g.,
polite vs assertive).

3. It ensures parity in user experience. By planning for ARIA live regions in
design, you ensure that blind and screen reader users receive timely
feedback about system responses, errors, confirmations, or live
updates—ijust like sighted users do.

Interruptions such as system alerts, popups, notifications, banners, or auto-
refreshing content should be avoidable or user-controlled, except when
urgent. This requirement is aligned with WCAG 2.2.4 Interruptions (AAA)

Accessibility Design Tools - Screen Reading Experience Page 183

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

which ensures users can stay focused, not lose progress, and control or
postpone unexpected interruptions. This is also important for users with
cognitive disabilities, attention-related challenges, or limited motor control,
who may find it difficult to return to their task or regain focus after an
unplanned disruption.

Interruptions can break the flow of interaction, causing users to lose their
place or input. To prevent this, designers should use non-intrusive alerts
that do not steal focus and provide settings to postpone or manage
notifications. This will help users stay oriented and maintain control without
unnecessary distraction.

Examples
:CJ Invisible Live Message |
i4 results found i
Select Product =~ “sessesseassans 2 e

[|D78 Q]

Ultra Jet Photo Color

O 1D782545267-D34

Flat Fabric
ID7855267566-A41

Watch

O 1D789254522-D06

Manual Handbook
1D78267234-D86

W Live Message IS IENEENEE Cancel

O

O
BEEA

Figure 123:
1. Invisible Message announced after triggering search,
2. Message “Draft saved” added to a toolbar because of a save operation.

@ Live Message

Your data has
been saved

Figure 124: Message announced when toast message appears temporarily in
the screen

Accessibility Design Tools - Screen Reading Experience Page 184

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Q Invisible Live Message :
:Error. Save action is blocked. :
iActivate to learn more

’ € save action is blocked. Learn more. X }

Figure 125: Sometimes an invisible message must be announced differently
from a visual message including extended information, such as semantic
description associated to visual cues (error sign)

Shared Benefits

Temporary Disabilities

All users

Live messages benefit everyone by providing immediate feedback on
actions and system updates, improving situational awareness and
interaction confidence, even when the visual change is subtle or transient.

Limited Cognition

Cognitive

Clear, concise live messages reduce confusion by explicitly communicating
system state changes and feedback from interactions, supporting better
understanding and task completion.

Accessibility Design Tools - Screen Reading Experience Page 185

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

For Developers

If you are using an Ul framework that possibly encapsulates one or more of
the methods below, look also for respective framework API property
documentation.

Web Development

By declaring live regions (self-announcing on DOM update)

<div role="group” aria-live="assertive”>

Error: Cannot perform save. Reason: Object locked by
other user

</div>

Mobile Development
i0S

¢ Notifying about the exceptional case

¢ Notify user about errors and allow user to move focus to the point
where the context of the notification is described.

e Create a notification area (e.g. a banner) which contains/displays the
context

e Create a notification and notify user

e Allow user to set focus on notification area and perceive the context
information.

.onChange (of: notification) { notification in

if notification?.priority == .high {
isNotificationFocused = true

} else {

postAccessibilityNotification() // notification.text

}

}

SwiftUl Accessibility: Beyond the basics
https.//developer.apple.com/videos/play/wwdc2021/10119/

(see from minute 24)

Android

Announce error messages

Accessibility Design Tools - Screen Reading Experience Page 186

https://developer.apple.com/videos/play/wwdc2021/10119/

<TextView
[..]

android:accessibilityLiveRegion="polite" />

Give instructions

if (BuildVERSION.SDK_INT >= BuildVERSION_CODES.JELLY_BEAN) {
myView.announceForAccessibility(R.string.SearchResultInfo);

}

See Android Live Regions | Mobile Al11ly, View.AccessibilityLiveRegion
Property (AndroidViews) | Microsoft Learn, View | API reference | Android

Developers

QO
@)
c
()
=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

References

WCAG 2.2 Reference

1.3.5 Identify Input Purpose (AA)

2.5.3 Label in Name (A)

2.2.4 Interruptions (AAA)

4.1.2 Name, Role, Value (A)

4.1.3 Status Messages (AA)

Accessibility Design Tools - Screen Reading Experience Page 187

https://mobilea11y.com/blog/android-live-regions/
https://learn.microsoft.com/en-us/dotnet/api/android.views.view.accessibilityliveregion?view=net-android-35.0
https://learn.microsoft.com/en-us/dotnet/api/android.views.view.accessibilityliveregion?view=net-android-35.0
https://developer.android.com/reference/android/view/View.html#setAccessibilityLiveRegion(int)
https://developer.android.com/reference/android/view/View.html#setAccessibilityLiveRegion(int)
https://www.w3.org/WAI/WCAG22/Understanding/identify-input-purpose.html
https://www.w3.org/WAI/WCAG22/Understanding/label-in-name.html
https://www.w3.org/WAI/WCAG22/Understanding/interruptions.html
https://www.w3.org/WAI/WCAG22/Understanding/name-role-value.html
https://www.w3.org/WAI/WCAG22/Understanding/status-messages.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Heading

Prepare a meaningful headings structure to enable all users and screen
readers to find relevant blocks of content quickly.

Component Variants

Visible Heading

Figure 126: Use this variant to identify a visible heading pointing to text that
appears on the screen

Invisible Heading
Invisible Heading ’
Heading Text

Figure 127: Use this variant to identify an invisible heading and informing the
content of the hidden heading

About Headings

The Headings navigation strategy is used with screen readers to skim the
page as they communicate the organization of the content.

Visible headings are directly tied to best practices on usability. The layout
and headings must respect the logical and consistent structure of the page
to provide predictability to the application exploration.

Use invisible headings when a page layout has a clear visual structure but
no visible heading to represent it. In your annotation, indicate which section
the invisible heading belongs to. This ensures that screen reader users
receive a meaningful, contextual announcement when navigating by
reading order.

Screen reader users often rely on heading navigation to quickly move
through content. In JAWS and NVDA, pressing the “H” key jumps from one
heading to the next, allowing users to scan and orient themselves efficiently
without reading everything line by line. This makes proper use of heading
hierarchy (H1, H2, H3, etc.) essential—not just for visual structure, but also
for creating a logical, navigable outline of the page. Poor or inconsistent

Accessibility Design Tools - Screen Reading Experience Page 188

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

heading structure can make navigation confusing and force users to work
harder to find information.

Dedicate the H1 to convey the main purpose of the page, since assistive
technologies often announce it as the page title. Make sure the rest of the
visible heading hierarchy matches the code structure (<h1>, <h2>, <h3>,
and so on).

Lower-level headings (<h2>, <h3>, etc.) should create subsections within
the higher-level section above them.

Note: Heading hierarchy is not consistently supported or recognized in
mobile screen readers. Users rely on swipe through headings without any
reference to the content structure. Even though many mobile screen
readers recognize only a single heading level, it is still important to define
all headings in the reading order. Proper headings ensure content remains
logically organized and understandable, supporting navigation and context
for all users.

SAP Figma Plugin

The SAP Figma Plugin “Headings” helps designers annotate their screens
identifying relevant focus order sequence.

Accessibility Design Tools - Screen Reading Experience Page 189

https://www.figma.com/community/plugin/1072563579293318294/accessibility-design-tools-second-edition

Examples

ﬂ Section #1 title

m Form name

Q
O
=
[}

=
[}
o
X

Lui
an

=

O
©
Q

(02
=
Q
<)
S
O

n

Figure 128: Complex Main Page with different heading levels. Additionally,
invisible headings have been defined for enhanced navigation within page
structure.

Accessibility Design Tools - Screen Reading Experience Page 190

Shared Benefits

Temporary Disabilities

All users

A concise and clear heading structure helps all users to orient in any user
interface. Audio feedback is generally helpful in all situations when users
are not looking at the user interface since they are occupied with other
tasks.

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Vision and Color Limitation

S Visuals

Large or clearly styled headings help users identify sections visually and
orient themselves within the content, reducing cognitive load and
enhancing readability.

Limited Mobility

Interactions

For users relying on keyboard navigation, headings provide logical
landmarks to jump between sections without needing fine motor control
for scrolling or pointing.

Limited Coghnition

Cognitive

Well-structured headings break content into meaningful, digestible
sections, supporting comprehension, focus, and memory retention.

Accessibility Design Tools - Screen Reading Experience Page 191

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

For Developers

If you are using an Ul framework that possibly encapsulates one or more of
the methods below, look for respective framework API property
documentation instead.

Web Development

By adding heading role with level info to HTML element

<div role="heading" aria-level="2">
My Heading
</div>

By using respective HTML element directly

<h2>My Heading </h2>

Hidden headings that can be read by screen readers can be created using
respective CSS on the heading like so:

.pseudoInvisibleText {
position:absolute!important;
clip:rect (1lpx,lpx, lpx, 1px) ;

Do not use display:none since this will remove the heading from the DOM
and it will no longer be detected by screen readers.

Mobile Framework Development
i0S
Declare headings as .isHeader trait

Screen reader VoiceOver allows Rotor-based navigation to headings.

VStack (alignment: .leading) {

Text (currentTile.name)

.font (.title)
.accessibility(addTraits: .isHeader)

VStack (alignment: .left) {
Text (listItem.label)

.font (.subheadline)
Spacer ()

Text (listitem.value)

.font (.subheadline)

}

Accessibility Design Tools - Screen Reading Experience Page 192

QO
@)
c
()
=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

See accessibilityAddTraits(_:) | Apple Developer Documentation ; isHeader

| Apple Developer Documentation

Android
Use accessibilityHeading on TextViews

<TextView

[]

android:id="@+id/myTextLevellviewld"
android:accessibilityHeading="true"

/>

See View | API reference | Android Developers

References

WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

1.3.2 Meaningful Sequence (A)

2.4.2 Page Title (A)

2.4.6 Headings and Labels (AA)

2.4.10 Section Headings (AAA)

Accessibility Design Tools - Screen Reading Experience

Page 193

https://developer.apple.com/documentation/swiftui/view/accessibilityaddtraits(_:)
https://developer.apple.com/documentation/swiftui/accessibilitytraits/isheader
https://developer.apple.com/documentation/swiftui/accessibilitytraits/isheader
https://developer.android.com/reference/android/view/View#attr_android:accessibilityHeading
https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/meaningful-sequence.html
https://www.w3.org/WAI/WCAG22/Understanding/page-titled.html
https://www.w3.org/WAI/WCAG22/Understanding/headings-and-labels.html
https://www.w3.org/WAI/WCAG22/Understanding/section-headings.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Landmark

Define semantic groupings in your layout and assign appropriate labelled
landmarks around them to enhance screen reader navigation.

Component Variants

Landmark

’

Landmark
Main

Label: E(=)'¢§

\

Figure 129: Use the annotation variants to define and label groups of related
information in your layout

About Landmark

Navigation by landmarks is used by users of assistive technology as an
alternative to “skip to main content.” They are used to speed navigation,
similar to skipping groups. Use them to indicate a region or a group within a
page to enhance screen reader navigation strategies.

Sighted users find it helpful to understand the structure of a page by
identifying groups of information visually laid out. Blind users understand
the structure of a page using landmarks embedded in screen reader tools.

Landmarks are only available for screen readers and are NOT a substitute
to skip blocks (F6). Landmark navigation on JAWS uses the “R” Key. In
NVDA, landmark navigation uses the “D” Key; the user uses shift + Key to
navigate backward. Both technologies (or tools) offer an interface listing the
landmarks, something not available on skip groups.

Please note: Currently the mobile operating systems iOS and Android do
not support Landmarks in views. This may change in future releases.

Although landmarks may overlap with skipping groups, the keyboard
navigation strategies differ. The same general structure of landmark blocks
(L & R keys in Jaws and NVDA) can match skipping groups (F6).

Accessibility Design Tools - Screen Reading Experience Page 194

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

Recommendations:
(1) Use the “Main” landmark only once on the page.

(2) Avoid repeating the same landmark as it decreases the ability to outline
unique regions of a page.

(3) Region, form, content info, complementary, navigation, and search can
be repeated. But you must add a label to make them distinguishable.

(4) Use them sparingly as too many landmark roles create "noise" in screen
readers, making it difficult to understand the overall layout of the page.

(5) The Complementary landmark is used to group tertiary information that
will help users understand the context of the content.

This list helps UX designers and developers to map HTML elements to their
ARIA roles correctly while minimizing unnecessary ARIA attributes.

e Banner: Represents introductory content or site-wide branding, It is
typically at the top of a page but should not be inside <article> or
<section> unless unique. ARIA landmark role <header>

¢ Navigation: Contains primary or secondary navigation links. It needs aria-
labelledby when there are multiple navigation regions. ARIA landmark
role <nav>

e Search: Identifies a section dedicated to search functionality. It acts as
an implicit landmark without needing role="search". ARIA landmark role
<search>

e Main: The primary content of the page, one per page. It helps screen
reader users skip repetitive elements like headers and sidebars. ARIA
landmark role <main>

e Complementary: Holds related, but non-essential content (e.g., sidebars,
ads, or widgets). It needs aria-labelledby if context is needed. ARIA
landmark role <aside>

¢ Region: Defines a section of content that is meaningful on its own. It
needs aria-labelledby if it needs a name for navigation. ARIA landmark
role <section>

¢ Contentinfo: Contains site-wide or section-wide footer information. It
should not be used inside <article> unless unique to that article. ARIA
landmark role <footer>

e Form: Becomes a landmark only when it has an accessible name (e.g,
aria-labelledby or <legend> in fieldsets). ARIA landmark role <form>

¢ Dialog: Represents a self-contained interaction, such as a pop-up or
modal. It becomes a landmark when it has role="dialog" or aria-
labelledby. ARIA landmark role <dialog>

Accessibility Design Tools - Screen Reading Experience Page 195

¢ Article: Represents self-contained content (e.g.,, news articles, blog
posts). It typically used in feeds or lists of independent content pieces.
ARIA landmark role <article>

The notation <> represents the HTML element that naturally map to each
ARIA landmark role. These elements are semantic by default, meaning they
automatically act as landmarks without needing extra ARIA roles (unless
there are multiple, and they need differentiation).

For example:

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

e <header> automatically acts as a banner landmark (unless inside
<article> or <section>).

e <pav> automatically acts as a navigation landmark (but might need aria-
label if multiple exist).

e <main> automatically acts as a main landmark (only one per page).

Jaws NVDA Voice Over Backwards

= o i w Y snin Y ra

Figure 130: Screen readers users may use these keys to navigate landmarks.

SAP Figma Plugin

The SAP Figma Plugin “Landmarks” helps designers annotate their screens
identifying relevant focus order sequence.

Accessibility Design Tools - Screen Reading Experience Page 196

https://www.figma.com/community/plugin/1072563579293318294/accessibility-design-tools-second-edition

Examples

mection #1 title

Form

[ELEW Section #1 title Form name Label:

Q
O
=
[}

=
[}
o
X

Lui
an

=

O
©
Q

(02
=
Q
<)
S
O

n

Landmark

Region

Section #2 title Label

Landmark
Complementary

Figure 131: Scheme for applying different types of landmarks for a complex
page. Regions and Forms require extra contextualization by labels to help
blind users distinguish between them.

Accessibility Design Tools - Screen Reading Experience Page 197

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Shared Benefits

Temporary Disabilities

All users

When landmarks align with the visual structure, the interface becomes
more usable for everyone. Screen reader users and sighted users can refer
to the same sections, making it easier to locate and access key areas while
supporting consistency and efficient interaction across the interface.

Limited Mobility

Interaction

Users navigating via keyboard or alternative input devices can move
between landmark regions quickly without relying on precise pointing or
scrolling.

For Developers

Ul technologies have different message raising techniques:

If you are using an Ul framework that possibly encapsulates one or more of
the methods below, look for respective framework API property
documentation instead.

Web Development

By adding landmark role to HTML element

<div id="content" role="main">
<!-- ... Main Content goes here ... -->
</div>

<div id="nav" role="navigation">

<!-- ... navigation entries ... -->
</div>
<form role="search" ...>

<input type="search" name="searchinput" />

Accessibility Design Tools - Screen Reading Experience Page 198

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

</form>

By using respective HTML element directly

<main id="content">
<!-- ... Main Content goes here ... -->
</main>

Mobile Development

Currently there is no API for landmarks in iOS and Android.

References

WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

2.4.1 Bypass Blocks (A)

Accessibility Design Tools - Screen Reading Experience

Page 199

https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/bypass-blocks.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Page Title

All users must be able to identify unique app contexts. Blind users with
screen readers must recognize the page they landed on.

Component Variants

Web Browser Title

Web Browser Title

Pattern

Figure 132: Indicate the page title on user agents (browser tab text) using a
standard pattern all users can perceive to identify unique app contexts and
screen readers announce correct title when a page loads.

Mobile App Title

Mobile App Title

Pattern

Figure 133: Indicate the app title using a standard pattern all users can
perceive to identify apps in mobile app switchers

About Page Title

Page Title is a unique identification text that helps users orient themselves
when page titles are presented on browser tabs or in OS app/task
switchers. The page title is the first announcement from the screen reader
when a page or a view is loaded.

Avisible page title helps all users locate where they are amongst the many
pages of a product. Page titles in mobile devices are identical to the current
view titles.

A Page Title is a combination of various identifiers, for instance one or more
visible section titles, product name, and application name.

Sighted users easily recognize all these elements, but the information may
be scattered or ungrouped on the page on desktops. Also, mobile apps
save space and usually hide some of this information. Use the Page Title

Accessibility Design Tools - Screen Reading Experience Page 200

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

annotation to combine the visually scattered Ul elements into one
meaningful information to be announced by the screen reader when user
opens the page. This information will also be available to sighted people
because it will be presented in the browser tab.

Page Titles must be planned and informed during the design of a screen to
allow the developer to code the title of the page correctly for all users.

Sometimes a page title is composed of invisible text. The Invisible Page
Title variant should be used in all cases where some titles or names could
be invisible. This will create a clear context for users of screen readers,
especially in mobile scenarios for pages without visible titles.

A variety of combinations are possible to present a page title pattern. The
sequence and presentation format of the individual parts has to be defined
by company guidelines.

Examples for page titles:

Page Title = Section Title(s) | App Name | Company Name
OR

Page Title = Product Name [Section Title(s)

Note: The OS or the browser may append to that the OS process name
automatically, such as “Google Chrome” for Chrome browser or the app
name such as “Microsoft Word”.

Accessibility Design Tools - Screen Reading Experience Page 201

Examples

B B @ N
DS ErRERT

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Web Browser Title

Financial Planning and Analysis | FP&A Software | SAP

Page Title + Product Title + Company Name

" Financial Planning a

Financial Planning and Analysis |
FP&A Software | SAP
sap.com

SAP

ccessibility Home.. ! Accessibility Comp...

Financial planning and analysis (FP&A)

Betterinsights lead to better outcomes. Improve financial planning. budgeting,
and forecasting with one trust if information. .

Explore demos Watch the video

—

Learn how to move to the cloud with SAP S/4HA
SAP TECHED Cloud, November 15-16.

Figure 134: Web Browser window as part of open windows in OS Task
Switcher overview. The title of the browser tab is labelling the respective task
switcher item.

Accessibility Design Tools - Screen Reading Experience Page 202

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Browser Tab Text as Page Title

The browser Tab text is considered a page title. The example combines
scattered elements in the Ul and recommends the following composition:

e Page Title + Product Title + Company Name

It is important to be consistent across pages. Create a Page Title formula
that follows your product or corporate guidelines, combining the same
visible text elements across pages, and invisible text if applicable, to
deliver a consistent experience across the product that helps users easily
recognize page titles.

Once defined, this text is also used to identify the Window in the OS App
switcher.

Mobile App Title

Mobile App Title .
e Paradise (Coldplay) - Google Chrome
All My Documents - MS Office 5 ; :
: View title + OS Process name
View title + OS Process name

Figure 135: App window as part of open windows in OS Task Switcher
overview. The title of the App window is labelling the respective task
switcher item.

Mobile App View Titles

Main view titles should be used to indicate the app in the task switcher.
This page title is composed of:
e View Title + OS Process name

(“OS Process name” content may be appended by the OS automatically)

Accessibility Design Tools - Screen Reading Experience Page 203

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Shared Benefits

Temporary Disabilities

All users

Page titles improve usability for everyone by providing a clear, consistent
reference for navigation, bookmarking, and multi-tab browsing, allowing all
users to quickly understand and return to relevant content. A visible page
or view title helps all users locate where they are among the many pages of
a product.

For Developers

Ul technologies have different message raising techniques:

If you are using an Ul framework that possibly encapsulates one or more of
the methods below, look for respective framework API property
documentation instead.

Web Development

By adding title element to head of page

<!DOCTYPE html>

<html>

<head>

<title>Customer Sales Orders - SAP CRM</title>

</head>
<body> ...

By modifying the title element content dynamically via JavaScript:

top.document.title = "Customer Sales Orders - SAP CRM";

Mobile Development
iOS:

For entire app and single screen views

ContentView ()
.navigationTitle ("My Title")

Accessibility Design Tools - Screen Reading Experience Page 204

.navigationDocument (
myDocument,
preview: SharePreview (
"My Preview Title", image: myDocument.image))

See Configure your apps navigation titles | Apple Developer
Documentation

Android:

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

For entire app and single screen activities/views

<application
android:label="@string/turns up in manage apps" >
<activity

android:name=".MainActivity"
android:label="@string/mainViewTitle" >

</activity>
</application>

See <activity> | App architecture | Android Developers

You can also use binding.rootView.announceForAccessibility("My fragment
title") in onViewCreated() function of your fragment.

If you are not using viewBinding then just use the root view of the
fragment's layout to call the function announceForAccessibility()

See Accessibilitylnfo - React Native

References

WCAG 2.2 Reference

2.4.2 Page Title (A)

Accessibility Design Tools - Screen Reading Experience Page 205

https://developer.apple.com/documentation/swiftui/configure-your-apps-navigation-titles
https://developer.apple.com/documentation/swiftui/configure-your-apps-navigation-titles
https://developer.android.com/guide/topics/manifest/activity-element#nm
https://reactnative.dev/docs/accessibilityinfo#announceforaccessibility
https://www.w3.org/WAI/WCAG21/Understanding/page-titled

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Role and Properties

Every design element must have a role name that follows common
terminology and, when applicable, clear information about its properties.

Define the meaning and purpose of each Ul element when designing the
component or when using the Ul element to design a screen.

Observe and inform clearly the Ul component properties, including their
states and attributes.

Component Variants

WAI-ARIA Widget Role

WAI-ARIA
Widget Role

button

Properties: name: value

Figure 136: These interactive roles act as standalone user interface
widgets/elements or as larger composite widgets/elements

WAI-ARIA Structure Role

WAI-ARIA
Structure Role

application

Properties: name: value

Figure 137: These roles describe structures that organize content in the user
interface and are usually not interactive

WAI-ARIA Landmark Role

WAI-ARIA
Landmark Role

banner

Properties: name: value

Figure 138: These roles are regions of the page intended as navigational
landmarks

Accessibility Design Tools - Screen Reading Experience Page 206

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

WAI-ARIA Live Region Role

WAI-ARIA
Live Region Role

alert

Properties: name: value

Figure 139: These roles indicate live (=self-updating) regions in the user
interface

WAI-ARIA Window Role

WAI-ARIA
Window Role

alertdialog

Properties: name: value

Figure 140: These roles act as windows within the browser or application

iOS UlAccessibilityTraits

i0S UlAccessibilityTrait
button

Properties: name: value

Figure 141: Set these traits in native iOS apps to tell assistive apps how an Ul
element behaves or how to treat it

Android Roles

Android Role
Button

Properties: name: value

Figure 142: Set these roles in native Android apps to tell assistive apps how
an Ul element behaves or how to treat it

Accessibility Design Tools - Screen Reading Experience Page 207

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

About Role and Properties

Connecting Roles and Properties Across Platforms

In both web and mobile interfaces, accessibility begins with clarity. This
includes clarity of purpose, structure, and interaction. Roles and properties
are foundational tools that help assistive technologies interpret and
communicate the purpose of each element to users.

Whether it is a button, a status update, or a live region, assigning the right
role ensures that the element behaves as expected across platforms.
Properties, such as labels or state indicators, enrich that experience by
adding meaningful context.

The annotations proposed in this section explores how roles and
properties work together to provide accessible, predictable, and inclusive
user experiences, on both the web and native mobile applications. While
the syntax may vary between platforms, the principles of semantics, clarity,
and user support remain constant.

We cover common patterns, key differences, and how to annotate these
elements effectively for diverse user needs so that they can be
implemented for accessibility.

Combined annotation

The Role & Properties annotation is used to specify the semantic role name
assigned to an implemented control, along with relevant ARIA properties or
mobile traits developers should apply. This ensures clarity in the expected
functionality, behavior, and accessibility support of each component. The
terms “role” and “properties” are explained in detail in next chapter.

Component designers are encouraged to reference commonly used WAI-
ARIA roles for web and mobile platform traits and roles (iOS and Android)
to guide their annotation process. This alignment ensures accessibility is
planned early and correctly implemented across platforms.

For example, consider a navigation control that appears as a menu bar on
desktop in full-screen view. On mobile devices, you might switch to a
toggleable menu pattern. In such cases, the entire markup structure, and
thus the role, changes. Rather than simply replacing a menu bar role with a
menu role, you would likely restructure the component entirely to reflect
the new interaction pattern. Annotating this shift early ensures the
appropriate roles and properties are applied for both layouts, supporting
accessibility without confusion.

1. Desktop — Menu Bar

Accessibility Design Tools - Screen Reading Experience Page 208

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Role: menubar - A menu bar is a container for menu items, typically used in
desktop-style navigation.

Associated ARIA properties and states:

e aria-haspopup="true" (if a menu item opens a submenu)

e aria-expanded="false" or "true" (used dynamically on items that can be
toggled open/closed)

¢ aria-controls (references the ID of the submenu controlled by the menu
item)

e aria-label or aria-labelledby (gives an accessible name to the menu bar)

e aria-orientation="horizontal" (optional but clarifies layout)

Child roles: menuitem, menuitemcheckbox, menuitemradio

2. Mobile Device — Toggleable Menu

Role: menu (or simplified navigation role inside a toggleable container) —
On small screen (like on mobile devices), navigation is often hidden behind
a "hamburger" icon and expanded via user interaction.

Associated ARIA properties and states:

e aria-expanded="false" (on the toggle button, changes to true when menu
is open)

e aria-controls="menulD" (to associate the toggle button with the menu
container)

e aria-label="Main menu" (on the toggle button, describing its function)
aria-hidden="true" (used on the menu itself when it is visually and
semantically hidden)

e aria-labelledby (used to associate the menu with a visible label, if
applicable)

Mobile platform traits:

¢ iOS: accessibilityTraits, for example, button, selected, header
¢ Android: button role, android:contentDescription with structural
hierarchy hints

Role

A well-designed component communicates its function through both form
and semantics.

One of the most critical elements in this process is the role, a standardized
term. Role is a key part of accessibility. For blind users, the role of an
element is understood through a screen reader in the same way sighted

Accessibility Design Tools - Screen Reading Experience Page 209

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

users rely on visual cues. Just as a button’s look tells a sighted person that
it can be clicked, the announced role ‘button’ gives a blind user the
meaning they need to decide the next best action that identifies the type of
user interface element.

Component designers should rely on familiar, commonly understood role
names to reinforce expected behaviors. Roles serve as the primary
indicator of the purpose of an element. This semantic association enables
assistive technologies to present and interact with components in ways
that align with user expectations, enhancing both usability and
accessibility.

When designing accessible components, assigning the correct ARIA role is
not just a developer concern. It is a critical part of the design specification.
Roles define the semantic purpose of Ul elements, enabling assistive
technologies to communicate what an object is and how users can interact
with it.

For component designers, observing roles involves more than naming:

e Match roles to expected behaviors. Roles must always align with user
expectations and keyboard interaction patterns. If a component looks
and behaves like a button, it must have the button role, regardless of its
visual design.

¢ Specify roles explicitly in design specs. Annotate custom components
(e.g, tab lists, accordions, sliders) with their intended ARIA roles. This
helps ensure consistent implementation across development teams and
avoids accessibility regressions.

¢ Mind role restrictions. Some roles can only be used with specific parent
or child roles (e.g., tab must be inside a tab list). Improper use can break
accessibility.

¢ Use native elements first. Whenever possible, leverage semantic HTML
elements (<button>, <table>, <nav>, etc.) that come with implicit roles.
This simplifies development and ensures robust support across
platforms and assistive technologies.

Note: To indicate the corresponding native HTML element for
developers, also use our WAI-ARIA annotations since there is role parity
with direct 1:1 mapping between ARIA roles and HTML elements which
can be studied in the following W3C specification: ARIA in HTML.

¢ Do not override native semantics unless necessary. Avoid removing or
altering native roles (e.g., turning a <button> into a div with role="button")
unless you have a specific accessibility enhancement in mind, and even
then, ensure all necessary keyboard and ARIA support is added.

Accessibility Design Tools - Screen Reading Experience Page 210

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

e Think cross-platform. Some ARIA roles are interpreted differently across
web and native mobile screen readers. Be cautious when designing
components that will be implemented across multiple platforms.

By proactively addressing roles during the design phase, you support
predictable, meaningful, and accessible user interactions. This reduces
ambiguity for developers and ensures inclusivity for all users.

Properties

In accessibility design, properties are vital in defining key characteristics of
an object that assistive technologies rely on to interpret and communicate
meaning to users. Properties are another essential part of accessibility. For
sighted users, properties such as color, size, or state (like checked or
disabled) are understood visually.

For blind users, those same properties are communicated through assistive
technology—for example, announcing whether a checkbox is checked, or a
button is disabled—so they can interpret the element’s condition and
decide the next best action.

Properties are another essential part of accessibility. For sighted users,
properties such as color, size, or state (like checked or disabled) are
understood visually. For blind users, those same properties are
communicated through assistive technology—for example, announcing
whether a checkbox is checked, or a button is disabled—so they can
interpret the element’s condition and decide the next best action.

A designer will inform when a control offers various combinations. For
example, a button may include properties such as ‘disabled, ‘expanded, or
‘pressed, while a form field may include ‘required’ or ‘invalid’ These can be
implemented in different ways, such as using visual cues like color and
icons for sighted users, and semantic properties such as aria-disabled or
aria-required for screen reader users.

A component designer is responsible for accurately assigning all possible
properties when specifying a component to be implemented, ensuring that
both visual and non-visual users can understand its full range of behaviors.

WAI-ARIA properties such as aria-labelledby, aria-describedby, aria-
controls, aria-colspan, and aria-autocomplete help describe relationships,
structure, or behaviors that are not visually evident but crucial for screen
reader users and other assistive tools.

While many properties tend to remain static (e.g., aria-labelledby typically
points to a persistent label), others may change depending on user
interaction. For instance:

Accessibility Design Tools - Screen Reading Experience Page 211

e aria-activedescendant, aria-valuenow, and aria-valuetext are dynamic
properties, often updated as the user interacts with a widget (e.g, sliders,
combo boxes).

e Some, such as aria-multiline, are configuration-like properties, which are
set at the time of design and are unlikely to change during use.

It is important to understand that while states and properties both start
with the aria- prefix, they serve different purposes:

e States (e.g, aria-checked, aria-expanded, aria-hidden) reflect a condition
that changes during interaction or automation.

e Properties describe attributes that often remain consistent, though
exceptions exist (such as aria-expanded, which can also act as a state in
interactive contexts).

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Understanding and applying properties correctly ensures that user agents
and assistive technologies can communicate clear, consistent meaning and
relationships, which is critical to creating accessible, intuitive experiences,
on both web and mobile platforms.

Let's now go through the examples and identify ARIA properties (and
mobile traits and roles, where applicable) that would typically be
associated with a menu bar on desktop and a menu or toggleable
navigation on mobile.

Accessibility Design Tools - Screen Reading Experience Page 212

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Examples

WAI-ARIA Examples for annotating roles and properties of user interface
elements in a web component inventory:

Menu ltem 1

) oo Menu Item 2
Widget Role

menu

Menu Item 3 Menu ltem 3.1

Widget Role

Widget Role Menu Iltem 3.2

) menu
menuitem

Properties: aria-posinset: 3
aria-setsize: 4
aria-haspopup: menu

aria-owns: id-submenu
aria-expanded : true

Menu Item 3.3

Figure 143: WAI-ARIA roles and properties for a menu with a submenu

Widget Role
menuitem

Menu Item 1 Ctrl+N

Properties: aria-posinset : 1
aria-setsize ; 3
aria-keyshotcuts: Ctri+N

Menu Item 2

Widget Role

separator

Menu Item 3

Figure 144: WAI-ARIA roles and properties for menu items

Widget Role
button

Properties: aria-label: Navigate to Home
aria-keyshortcuts: "CTRL+H"

Figure 145: Non-Decorative interactive icon (acts on click)

Accessibility Design Tools - Screen Reading Experience Page 213

Structure Role
presentation

Properties: aria-hidden: true

Figure 146: Icon declared as decorative

Structure Role

Q
O
c
Q
S
()
Q
X
L
on
=
©
O
Q
(42
c
()
o
O .
n img

Properties: aria-label: Drag Handle

Figure 147: Non-Interactive Icon (but needed for dragging operations as focal
point)

Structure Role

Heade heading Landmark Role
e aroiest 1 region
Search || s

Window Role
alertdialog

Landmark Role
region

Properties: aria-label: Content

Properties: aria-label: Header Title

Landmark Role

region

Properties: aria-label: Footer

Figure 148: Section subdivisions in a floorplan for a large dialog

Android Role
Text View

Properties: labelFor: @id/switchl

Android Role

Switch

Properties: id: switchl
setChecked: true

Sound:

Figure 149: Role declaration and Label-control association for a custom
Android switch component

Accessibility Design Tools - Screen Reading Experience Page 214

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

108 UlAccessibilityTrait ﬂn} Read Out

M Tag Row, contains 4 tags, plus three more
Most Preferred| Recycled In Stock On Sale customTrait
Properties: Trait: "Tag Row’ Tag Count info

Expected Property List

Speech Output custom role, tag count, number of more tags

108 UlAccessibilityTrait

Properties: Traits: "Tag", Label, (Status and Interaction Info)

m 9 Read Out
Tag, Recycled, activate to select

Property List

Expected
Speech Output

custom role, label, optional extra status and interaction info

Figure 150: Accessibility Traits declarations for a custom iOS “Tag Row”
component, using additionally the Expected Speech Output annotation for
clarification

Shared Benefits

Temporary Disabilities

All users

Clear roles and properties help users understand what an element does
and how it behaves. Even for sighted users, predictable behavior improves
confidence, reduces errors, and supports efficient interaction, making the
interface feel more intuitive and reliable.

For Developers

Please use the roles the designer assigned. When discussing your choices
for control role assignments, please draw on your experience.

Ul Frameworks

If you're using a Ul framework that includes these roles, please refer to the
framework's control documentation. You can then check if the control
aligns with the intended use in the design.

For New or Unfamiliar Roles

If you don't have experience with a particular role, please take some time
to review the platform documentation to get familiar with it.

Accessibility Design Tools - Screen Reading Experience Page 215

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Web Development

WAI-ARIA roles for Web Development

Accessible Rich Internet Applications (WAI-ARIA) 1.3

Table 10: WAI-ARIA roles

Widget Roles Structure Roles Landmark Roles Live Window
Region Roles
Roles
button application banner alert alertdialog
checkbox article complementary log dialog
gridcell blockquote contentinfo marquee
link caption form status
menuitem cell main timer
menuitemcheckbox code navigation
menuitemradio columnheader region
option comment search
progressbar definition
radio deletion
scrollbar directory
searchbox document
separator (when emphasis
focusable)
slider feed
spinbutton figure
switch generic
tab group
tabpanel heading
textbox img
treeitem insertion
combobox list
grid listitem
listbox mark
menu math
menubar meter
radiogroup none
tablist note
tree paragraph
treegrid presentation
row
rowgroup
rowheader
separator (when
not focusable)
strong
subscript
suggestion
superscript
table
term
time
toolbar
tooltip
Mobile Development
Accessibility Design Tools - Screen Reading Experience Page 216

https://www.w3.org/TR/wai-aria-1.3/#widget_roles

In iOS, control roles are called traits, while Android uses the term “role”
instead. For correct usage of these roles, please consult the respective
platform documentation.

iOS Traits

e UlAccessibilityTraits at Apple Developer Documentation

Android Roles

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

e Android accessibility: roles and TalkBack - TetraLogical
e Talkback accessibility roles

Table 11:i0S Traits and Android roles

iOS Traits Android Roles
adjustable Action Bar Tab
allowsDirectInteraction Alert Dialog
button Button
causesPageTurn Check Box
header Checked Text Preview
image Date Picker
keyboardKey Date Picker Dialog
link Drawer Layout
none Drop Down List
notEnabled Edit Text
playsSound Horizontal Scroll View
searchField Icon Menu
selected Image
startsMediaSession Image Button
staticText Keyboard Key
summaryElement List
supportsZoom Number Picker
tabBar None
toggleButton Pager
updatesFrequently ProgressBar

Radio Button

Role Grid

Scroll View

Seek Control

Sliding Drawer

Staggered Grid

Switch

Tab Bar

Talkback Edit Text Overlay

Text Entry Key

Time Picker

Time Picker Dialog

Toast

Toggle Button

View Group

Web View

Custom Components

Accessibility Design Tools - Screen Reading Experience Page 217

https://developer.apple.com/documentation/uikit/uiaccessibilitytraits
https://tetralogical.com/blog/2022/07/07/android-accessibility-roles-and-talkback/
https://github.com/google/talkback/blob/master/utils/src/main/java/com/google/android/accessibility/utils/Role.java

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Sometimes it is necessary to create custom components, instead of using
the available controls, and assign roles to them.

i0S:

Make your component to be an AccessibilityContainer then give it a label, a
group (if needed), child elements, etc.

Custom components require much effort, see videos and documentation:

e https://developer.apple.com/videos/play/wwdc2021/10119/
e https://developer.apple.com/videos/play/wwdc2021/10122

Android:
How to make accessible components

1. Extend existing view or subclass with own class

Override the methods from the superclass

Handle directional controller clicks

Implement accessibility APl methods

Send AccessibilityEvent objects specific to your custom view
Populate AccessibilityEvent and AccessibilityNodelnfo for your view
Add custom actions for components

Nou,rwbdN

ViewCompat.setAccessibilityDelegate (set actions button
, object : AccessibilityDelegateCompat () {
override fun onInitializeAccessibilityNodeInfo(v:
View, info: AccessibilityNodeInfoCompat) {
super.onInitializeAccessibilityNodeInfo (v, info)
info.addAction (AccessibilityActionCompat (
AccessibilityNodeInfoCompat.ACTION CLICK, "Edit
note"))
info.addAction (AccessibilityActionCompat (
AccessibilityNodeInfoCompat.ACTION LONG CLICK, "Copy
note™))
}
)

8. Add custom role names for components

ViewCompat.setAccessibilityDelegate (login text view as
_button with role,

object : AccessibilityDelegateCompat () {

override fun onInitializeAccessibilityNodeInfo (v:
View, info: AccessibilityNodeInfoCompat) {
super.onInitializeAccessibilityNodeInfo (v, info)
info.roleDescription = "Button"

}

1)

Accessibility Design Tools - Screen Reading Experience Page 218

https://developer.apple.com/videos/play/wwdc2021/10119/
https://developer.apple.com/videos/play/wwdc2021/10122

See also:

https://developer.android.com/develop/ui/views/layout/custom-
views/custom-components

https://developer.android.com/guide/topics/ui/accessibility/custom-views

https://developer.android.com/codelabs/advanced-android-kotlin-
training-custom-views#0

https://tetralogical.com/blog/2022/07/07/android-accessibility-roles-and-
talkback/

QO
@)
c
()
=
()
o
X
L
on
£
O
©
QO
0
c
()
()
P —
O
()]

https://developer.android.com/reference/kotlin/androidx/compose/materi
al/package-summary#Slider

References

WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

4.1.2 Name, Role, Value (A)

Accessibility Design Tools - Screen Reading Experience Page 219

https://developer.android.com/develop/ui/views/layout/custom-views/custom-components
https://developer.android.com/develop/ui/views/layout/custom-views/custom-components
https://developer.android.com/guide/topics/ui/accessibility/custom-views
https://developer.android.com/codelabs/advanced-android-kotlin-training-custom-views#0
https://developer.android.com/codelabs/advanced-android-kotlin-training-custom-views#0
https://tetralogical.com/blog/2022/07/07/android-accessibility-roles-and-talkback/
https://tetralogical.com/blog/2022/07/07/android-accessibility-roles-and-talkback/
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary#Slider
https://developer.android.com/reference/kotlin/androidx/compose/material/package-summary#Slider
https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/name-role-value.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Speech Output

Plan the Speech output by describing what a screen reader would read out
during keyboard focus.

Component Variants

Speech Output

m])) Read Out
Text that should be spoken

Property List

Expected

Speech Output i.e. label - role - state - description

Figure 151: Describe what a screen reader should announce on element
focus

About Speech Output

Accessibility needs to be addressed at every level of a webpage, from the
big picture down to the smallest details.

Think of it this way: a whole page needs to be accessible so users can
explore and understand the content on a macro level, like navigating
between major sections. Similarly, individual components, such as a button,
form field, or dropdown menu, must also be accessible to ensure users can
perform micro-interactions successfully.

In short: a page is for exploring, and a component is for interacting. Both
must be accessible for the user to have a smooth experience.

Simulating screen reader announcements is a powerful way to verify the
usability of a digital interface for users who are blind or have low vision. By
translating the visual design into a text-based script, we can test whether
the announcements are logical, coherent, and helpful for task completion.

The screen reader does not just read the words on the screen; it announces
a combination of elements that provide a complete picture of the interface.
This includes landmarks that act as navigational signposts, such as "main"
or "footer," helping users quickly move between major sections of a page.
Headings, announced as H1, H2, and so on, create an outline of the
content, allowing users to scan and jump to specific topics. The roles of
elements, such as "button," "link," or "checkbox," are announced to tell the
user what they are interacting with. Additionally, states and properties

Accessibility Design Tools - Screen Reading Experience Page 220

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

provide crucial information about the current condition of an element (e.g,,
"checked" or "collapsed"), while labels and names are the actual text that
the screen reader reads, like "submit" for a button. This combination of
announced elements is what truly defines the user experience for
someone relying on a screen reader.

To create an effective screen reader announcement script, you must step
through the design as a screen reader user would. For each interactive
element or section, write down exactly what the screen reader would
announce, combining all the relevant information such as the role, state,
and name. For example, a "Sign in" button would be annotated as "Sign in,
button," (where the first is the visible label and the second is the role) and a
"Remember me" checkbox might be "Remember me, checkbox, not
checked" (where the first is the visible label, the second is the role and
third is the property).

Using the speech output annotation enable designers and developers to
test the flow and logic of the announcements, ensuring that the language is
clear, the order is correct, and the announcements make sense in the
context of completing a task. This process helps identify potential
accessibility issues before the code is even written, ensuring a more
inclusive and usable experience for everyone.

The speech output simulation will help designers answer:

e Isthe order correct?

e Isthe language clear?

e Do the announcements make sense in the context of completing a task,
like logging in?

This process helps identify potential accessibility issues before the code is
written, ensuring a more inclusive and usable experience for everyone.

Speech Output is an example of a screen reader reading out according to
the component attributes. However, a simulated speech output is just an
expectation expressed by component and application designers. There is
no guarantee that implementation will correctly map the text to how a
screen reader will read it out.

A sequence of properties recommended consists of the following:

e LABEL(S): visible or invisible associated label(s)

e ROLE: component type/role (such as “button”)

e VALUE: contained value(s) (such as numbers or text)

e STATE(S): state(s) (such as “disabled”)

e OTHER PROPERTIES: other properties (such as “required” or the
placeholder)

Accessibility Design Tools - Screen Reading Experience Page 221

e DESCRIPTION(S): visible or invisible description(s) suggesting some
helpful information to the user such as units (“EUR”)

e HOT KEY: assigned hot keys (such as “Ctrl+S” for saving operation)

e ACCESS KEY: assigned access keys (such as “Alt+S”)

e TUTOR INFO: additional info for blind users (other keys to use)

When crafting content for screen readers, remember that brevity is key.
Blind and low-vision users listen to every word, and excessive detail can
quickly become tedious.

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Your goal is to provide just enough information for them to understand and
complete their tasks without making the application overly "chatty." Less is
more. Each word should be intentional, concise, and purposeful to ensure
a smooth and efficient experience.

Examples
WAI-ARIA m
Widget Role g D) Read Out
button @ “Save Button Ctrl+S”
Expected Property List

Speech Output label, role, shortcut

Properties: aria-label = “Save”
aria-keyshortcuts = “Ctrl+5"
aria-describedby = “ID_Tooltip”

Figure 152: Expected speech output on keyboard focus for a custom tooltip
of an icon button as combination of hidden button label and keyboard
shortcut

Accessibility Design Tools - Screen Reading Experience Page 222

QO
@)
c
()
=
()
o
X
L
on
£
O
©
QO
0
c
()
()
P —
O
()]

Volume Read Out
@) “Volume Slider 40 Percent”

—0

WAI-ARIA
Widget Role

Property List

Expected
Speech Output

label, role,

aria-valuenow,
aria-valuetext

slider

Properties: aria-label="Volume”
aria-valuemin = 0
aria-valuemax = 100
aria-valuenow = 40
aria-valuetext="40 Percent”
aria-arientation ="harizontal”

Volume m D) Read Out
D ‘41 Percent”
Expected Property List
Speech Output aria-valuenow, aria-valuetext

WAI-ARIA
Widget Role

slider

Properties: aria-label="Volume"
aria-valuemin = 0
aria-valuemax = 100
aria-valuenow = 41
aria-valuetext="41 Percent”
aria-orientation ="harizontal”

Figure 153: Expected speech output for a change in a value of a focused
volume slider control (combined with Role and Property annotations, arrow
right/up plus keys increment value by one)

Shared Benefits

Temporary Disabilities

All users

The Speech Output annotation simulates the announcements a screen
reader would make, allowing designers and users to preview how content
will be conveyed audibly. Simulated speech output helps designers verify
content clarity, labels, and interaction feedback, indirectly benefiting
everyone by ensuring interfaces are intuitive, consistent, and accessible.

Accessibility Design Tools - Screen Reading Experience Page 223

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Vision and Color Limitation

= Visuals

Some users with partial sight use screen readers to complement visual
information. Speech output reinforces comprehension, helps confirm
actions, and supports interaction with complex interfaces.

For Developers

What you get from the annotation is a rough expectation of the individual
parts of the speech string to be spoken, it is NOT a binding command with
respect to the sequence of the different parts.

Screen readers on the different platforms have built-in heuristics in which
they speak the roles and attributes. Do not try to change that by artistically
juggling with properties and over-denote property meaning and content.

For instance, it is not appropriate to put descriptions or even object values
in object labels. Instead, use description properties for these cases.

Follow the rules for correct role assignment and attributing given in the API
documentation for web and mobile development, test with a screen reader
and user agent combination of choice on the platform and evaluate if the
result fits to the output the designers have given you as speech
expectation.

References

WCAG 2.2 Reference

1.3.5 Identify Input Purpose (AA)

2.5.3 Label in Name (A)

3.1.5 Reading Level (AAA)

4.1.2 Name, Role, Value (A)

4.1.3 Status Messages (AA)

Accessibility Design Tools - Screen Reading Experience Page 224

https://www.w3.org/WAI/WCAG22/Understanding/identify-input-purpose.html
https://www.w3.org/WAI/WCAG22/Understanding/label-in-name.html
https://www.w3.org/WAI/WCAG22/Understanding/reading-level.html
https://www.w3.org/WAI/WCAG22/Understanding/name-role-value.html
https://www.w3.org/WAI/WCAG22/Understanding/status-messages.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Audio Control

Keep sound auto play under 3 seconds and provide mechanisms to pause
or stop, or to control volume.

Component Variants

Audio Control Pause — Stop

Figure 154: Stop and Pause helps users prevent screen reader
announcement overlap with background sound.

Audio Control - Volume

Figure 155: Volume controls mainly benefit blind and cognitive users, not
those with hearing loss.

About Audio Control

If any audio on a Web page plays automatically for more than 3 seconds,
either a mechanism is available to pause or stop the audio, or a mechanism
is available to control audio volume independently from the overall system
volume. Any user, including those who are hard of hearing, neurodivergent,
or easily distracted must be able to identify, control, stop, or muting these
sounds.

The WCAG Success Criteria 1.4.2 Audio Control (A) is meant to provide
mechanisms to stop or pause sound or to make available an audio volume
control independently from the overall system volume level. Blind users
need control over audio playback and descriptions of visuals because they
find unexpected audio disorienting due to sound overlap, which blocks
screen reader from accessing and announcing content and context.

People who use screen readers rely heavily on audio for navigation. Auto-
playing media with sound can be a major barrier for screen reader users.
The unexpected audio overlapping sounds from auto-playing media and
screen reader announcements can create confusion, cognitive overload, or
even make it impossible to understand either stream.

Accessibility Design Tools - Screen Reading Experience Page 225

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
wn

Sound control helps prevent interference, allowing users to manage the
timing and presence of audio.

If any audio plays automatically for more than 3 seconds, the sound can
overlap with screen reader announcement, making it hard or impossible for
blind users to hear what the screen reader is saying. To avoid this chaotic
scenario, provide a mechanism to pause or stop the audio, or warn the user
given them an opportunity to control audio volume independently from the
overall system volume.

Why does this matter? Screen reader users rely on audio output.
Overlapping sounds (from autoplay videos, music, or alerts) can interrupt
or obscure the screen reader.

When documenting audio in the design make controls accessible to
provide an accessible experience to all users. Avoid auto playing audio. If
autoplay is necessary, ensure it lasts less than 3 seconds, or provide a
visible and programmatically accessible control to pause or stop the audio.
This ensures blind users can use their screen readers to access content
confidently without interference.

Compliance with accessibility guidelines requires sounds to be available to
a broader range of accessibility needs:

e controls are accessible and navigable via keyboard.
e labels are clear for screen reader users.

e Ul element from control is focusable.

e sound is paired with captions or transcripts.

Controls:

¢ Provide visible, easy-to-use controls to Play and Stop media content.

e Controls should be clearly labeled (e.g, "Play" and "Stop") and

e accessible via keyboard and screen reader.

e Ensure the controls are prominent in the Ul, so users can quickly pause
or stop content as needed.

¢ Allow for easy muting of audio or adjusting volume when content
includes background sound, music, or noise that might interfere with
captions or reading.

Note: In addition to voice announcements, screen readers use a variety of
sounds to provide non-verbal feedback. These audio cues are an essential
part of the user experience, signaling everything from entering a new page
to the successful submission of a form. They complement the spoken
words to give users a complete understanding of what is happening on the
screen. Sounds, like the Windows notification chime or a pop-up alert can
often be disruptive and confusing because they are not part of the

Accessibility Design Tools - Screen Reading Experience Page 226

consistent language of the screen reader, making it difficult to distinguish
between helpful assistive technology cues and random system alerts. For
users who depend on these technologies, a clear and consistent sound
design is as critical as the spoken words themselves.

Examples

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

QI' Volume Control]

QO rause-Stop P O _ g 0:09 / 2:05

Figure 156: Volume of automatically played audio content can be changed
independently of the system volume. Videos can be paused or stopped.

]! volume Control

= O X
B ‘Thor: Ragnarok” Official Tra: 41 X +
¢« c & youtube New tab to the right v N =
Move tab to another window 4
— n Pl‘emlllm Reload Ctrl+R i .‘ e
Duplicate

Pin
Mute site’

Send to your devices

Close Ctrl+W

Close other tabs

Close tabs to the right

Figure 157: Automatically played audio content can be muted

Accessibility Design Tools - Screen Reading Experience Page 227

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Shared Benefits

Vision and Color Limitation

% Visuals

Some low vision users rely on screen magnifiers and audio cues. Being able
to pause or control audio allows them to consume information at their own
pace, without being rushed by background media they can’t quickly
identify or stop.

Limited Cognition

Cognitive

For users who are sensitive to unexpected sounds, such as people with
autism, ADHD, or anxiety, unanticipated audio can be distressing or
disruptive. Sound controls give them the option to avoid sensory overload,
helping them stay focused on the task. Reducing unwanted audio by
muting or stopping the audio entirely helps reading captions or reviewing a
transcript. Clear Play/Stop or Mute controls ensures these users are not
forced to listen to audio content they may not need, enhancing their
experience.

Without or Limited Hearing

Sound

Deaf and hard-of-hearing users need text or sign-based alternatives to
sounds - audio alone is not accessible. These users rely on visual
alternatives such as captions and transcripts. But accessibility is not just
about providing those alternatives. It is also about giving control. Include
clear Play, Pause, Stop, and Mute controls for audio and media content so
that users read at their own pace while reviewing captions or transcripts.
Without these controls, users may miss key information. Let them control
playback timing, mute or skip audio they do not need, reducing distraction
or overload. Sound control supports autonomy, improves comprehension,

Accessibility Design Tools - Screen Reading Experience Page 228

and respects user preferences, especially for those navigating media
content visually rather than aurally.

For Developers

Use the audio controls for the platform or framework inventory
components triggering respective sound output API properties on the
platform.

References

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

WCAG 2.2 Reference

1.4.2 Audio Control (A)

Accessibility Design Tools - Screen Reading Experience Page 229

https://www.w3.org/WAI/WCAG22/Understanding/audio-control.html

Audio Description

Use the “Audio Description” annotation to indicate that key visual content is
described in audio or a separate track, ensuring users who are blind or
have low vision can fully understand the media.

Component Variants

Audio Description

@ Audio Description

Figure 158: Available audio describes key visual content inside or in a
separate track

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

About Audio Description

Audio Description is a required requirement to describe important visual
details not spoken in the main audio. It is meant for technical writers to
provide description to non-spoken dialogs. Screen readers cannot handle
this task yet but maybe Al will soon help screen readers provide
complementary description to important visual details from videos.

To make videos accessible to people who are blind or cannot understand
visual content, provide synchronized or extended audio descriptions,
spoken explanations of key visual elements. These descriptions ensure
users can follow what is happening on screen even without seeing it.

An audio description must be provided for any visual content in the video
that is not conveyed through the existing audio (e.g,, silent actions, facial
expressions, on-screen text). This description is typically added as a
secondary audio track that fits into pauses in the main narration.

When standard pauses in the video are not enough to convey essential
visuals, extended audio descriptions must be added to meet accessibility
requirements. This supports compliance with WCAG Success Criteria 1.2.5
Audio Description (Prerecorded) (A) and 1.2.7 Extended Audio Description
(Prerecorded) (AAA), which require audio descriptions for all pre-recorded
synchronized media. Extended Audio Description highlights temporal
accommodation for more detailed descriptions and requires pausing video
to insert longer descriptions of visual content. WCAG 1.3.3 Sensory
Characteristics ensures that information that is not conveyed by visuals
alone is also accessible in non-visual formats.

Accessibility Design Tools - Screen Reading Experience Page 230

https://www.w3.org/TR/WCAG22/#audio-description-prerecorded
https://www.w3.org/TR/WCAG22/#extended-audio-description-prerecorded
https://www.w3.org/TR/WCAG22/#extended-audio-description-prerecorded

Q
O
=
[}

=
[}
o
X

Lui
an

=

O
©
Q

(02
=
Q
<)
S
O

n

If your design provides an audio description and a text description, there is
no need to fulfill the 1.2.8 Media Alternative (Prerecorded) (AAA)
requirement.

Examples
My App
Playing Recording & View Full transcript @

=) Transcript @ Transcript

Various ballons flying int
Audio Description
the blue sky and

00

Figure 159: Synchronized Audio Descriptions as text alternative for non-text
content (video) as part of a transcript

Shared Benefits

Temporary Disabilities

All users

Providing audio description benefits everyone. It improves comprehension
in situations where users cannot look at the screen (multitasking, hands-
free contexts, or all-screen devices). For second-language learners, audio
description reinforces meaning by explicitly naming actions, settings, or
expressions that might otherwise be missed. Audio description enhances
usability and supports inclusive learning.

Accessibility Design Tools - Screen Reading Experience Page 231

Limited Cognition

| Cognitive

Audio description supports people with cognitive disabilities who may rely
on additional narration to follow complex visual cues.

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

For Developers

Use framework inventory components containing or linking to respective
transcript and audio description resources on the platform.

References

WCAG 2.2 Reference

1.2.5 Audio Description (Prerecorded) (AA)

1.2.7 Extended Audio Description (Prerecorded) (AAA)

1.3.3 Sensory Characteristics (A)

Accessibility Design Tools - Screen Reading Experience Page 232

https://www.w3.org/WAI/WCAG22/Understanding/audio-description-prerecorded.html
https://www.w3.org/WAI/WCAG22/Understanding/extended-audio-description-prerecorded.html
https://www.w3.org/WAI/WCAG22/Understanding/sensory-characteristics.html

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Language

Specify the default language for the user interface and identify where
language changes on the user interface are present.

Component Variants

Page Language

| |Page Languageé
' @lang=id

Figure 160: Specify the default language of a page

Part Language

Figure 161: Specify where language changes are expected
About Language

Success Criteria 3.1.1 Language of Page (A) and 3.1.2 Language of Parts
(AA) ensure correct assignment of primary language of a webpage or any
change in language within a page. The goal is to consider multilingual
content by ensuring the primary language is clearly defined for screen
readers and other assistive technologies. Planning language of page and
language of parts prevents miscommunication across globalized interfaces.

Examples where language may be considered in the page layout are:

e quote or sentence in French within an English page (e.g., Bonjour)

e greetings in a banner that updates the language upon page refresh (e.g.
Bienvenido, Bienvenue, Willkommen, Benvenuto)

Why It Matters: Screen readers rely on this to read content with correct
pronunciation and intonation. It also important for screen readers to
pronounce foreign phrases correctly, while supporting language learners
and global users. For public websites it improves SEO and machine
translation quality.

Accessibility Design Tools - Screen Reading Experience Page 233

As a designer you should observe and specify the following:

¢ Default Page Language: Define the main language for the entire page or
screen. Indicate the default language in the design documentation to
guide developers to set the lang attribute in the HTML tag. Use
consistent language throughout the page to avoid confusion for users
relying on assistive technologies. If designing for localization, specify
which version of the design corresponds to which language (e.g., English,
French, Spanish).

e Part Language: Indicates the human language of each passage or phrase.
Designers must identify any text that is not in the main language of the
page and indicate the content within the page that contains the non-
prevalent language.

o Flag it as a different-language element that needs to be marked with the
correct language attribute. Avoid mixing languages without clear
separation in UL,

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Users relying on Assistive Technologies or Smart Agents benefit from voice
assistants (like Siri or Google Assistant) and screen readers use lang tags to
determine pronunciation, pitch, and grammar parsing. This also affects
speech input systems (for example, dictation in a bilingual context), which
may misinterpret words without a clear language definition.

Accessibility Design Tools - Screen Reading Experience Page 234

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Examples

j B Page Language

§ @ Part Language LT lang=en
Language information is also available
to sighted people.
SAP News [®l More news My Day My Pins V4
D Regional News from Employees Today ﬂ ﬂ [I]
i\ : / Benefits - Non Travel Training
E My workspace on campus '.] i Epeen
'{"*T‘s‘ for today
@ 5] @
T
F N Success Aviard Appreciate
Factors
S g
Argentina’s Vital Groceries Group tratch yotli Body. Qs
Transforms with SAP SI4HANA Do'thia gukied 2 minuts Suf 7~ h=4 B N
Circles Exercise 0
Ariba Guided Old Fiori Page COVID-19
4 14| WalkMe Boosts Efficiency buying
‘H l for HR and Employees at
TUI Tomorrow
- Currently no events to show for tomorrow ® @ ‘gﬁ
[New Al Tool Prevents
’ Conflict Through Better :"“"s‘:’:’ s"“"‘ L :"“‘f’“"““
'+ Communication o bk Rcaccn
Q i From Aspiration to Reality: m
» 0 C How PhD Research Shapes
g SAP

The language information is available
to sighted users on activating the
underlined text.

Thaitand, and Laos.
And s pronounced fnyo-ZHOW,
3 ey

Figure 162: Page is in English but contains quotes in other languages

Shared Benefits

Limited Cognition

Cognitive

Those with cognitive and learning disabilities may use text-to-speech (TTS)
tools that rely on correct language metadata to pronounce words correctly.
For example, someone with dyslexia might use TTS in English, and without
lang="es", a phrase like “¢Como estas?” might be read in a garbled way.
Proper language cues help comprehension and reduce confusion.

Accessibility Design Tools - Screen Reading Experience Page 235

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

Temporary Disabilities

All users

Multilingual or Non-Native Speakers may rely on machine translation tools
(like Google Translate), which perform better when the language is
explicitly defined. Clear lang attributes improve translation accuracy and
grammar context, making information more accessible. Helps language
learners navigate hybrid-language pages (e.g., English sites with French
quotes).

Sighted Users using read-aloud tools such as Read Aloud, Natural Reader,
or native browser TTS (e.g,, Safari's Reader Mode) rely on language tags to
deliver natural-sounding speech. Incorrect language attribution can create
frustration due to robotic or incorrect pronunciation. This also applies for
sighted users listening instead of reading.

Organizations and Legal/Compliance Teams: while not a “user” group, this
requirement serves legal departments trying to mitigate risk and
demonstrate inclusive practice. Mispronounced phrases due to missing
language declarations can be used in legal cases to show lack of due
diligence, especially in public sector or multilingual countries.

For Developers
Web Development

Developers should ensure proper markup to use the 1ang attribute for
specific sections.

On body tag (for page language, all Ul text) and in page (for parts of Ul
text):

<body lang="en”>

Search results:

Die Geschichte des Mittelalters

American History

</body>

Accessibility Design Tools - Screen Reading Experience Page 236

Mobile Development

As of today, there is no concept for part language identification in mobile
platforms.

References

WCAG 2.2 Reference

3.1.1 Language of Page (A)

QO
@)
[
()
‘=
()
o
X
L
on
£
e
©
QO
0
c
()
()
P —
O
()]

3.1.2 Language of Parts (AA)

Accessibility Design Tools - Screen Reading Experience Page 237

https://www.w3.org/WAI/WCAG22/Understanding/language-of-page.html
https://www.w3.org/WAI/WCAG22/Understanding/language-of-parts.html

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Cognitive Experience

Imagine looking at a screen with lots of information and
feeling confident about where to start. What turns a confusing
interface into an empowering experience? The answer is a
predictable interface that is easy to use and navigate. This
allows users with coghnitive disabilities and neurodivergent
users to build mental models and accomplish their goals
successfully.

This chapter shows designers how to create a clear and predictable
experience that reduces coghnitive load for everyone, especially people
with cognitive or learning disabilities.

The Inclusive Cognitive Experience

A cognitive experience is the way our mind takes in information, pays
attention, remembers, learns, uses language, and solves problems. It is how
we process information and make sense of the world.*

Here are a few examples:

e Perception: noticing a red button on the screen.

o Memory: recalling where you find vegetables in the online store.

« Attention: focusing on a lecture despite background noise.

« Reasoning: figuring out the solution to distribute the compensation
budget.

o Decision-making: choosing between 5 training courses in a
carousel.

Design your application to be clear, predictable, and simple for everyone
to understand, especially users with cognitive disabilities and
neurodivergent users.

Users with cognitive disabilities and neurodivergent users benefit from
interfaces that are clear, predictable, and easy to navigate. When interfaces
support different ways of thinking and processing information, users can
accompulish their tasks confidently through predictable, well-structured
design.

Accessibility Design Tools - Cognitive Experience Page 238

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Consistent navigation and layout enable all users to build mental models
and navigate with confidence. This predictable structure is especially
crucial for users with cognitive disabilities and neurodivergent users,
allowing them to focus fully on accomplishing their intended tasks.

Users with cognitive disabilities and neurodivergent users particularly
benefit from clear, step-by-step guidance that helps them move through
complex processes without feeling overwhelmed. Plain language, paired
with visual cues such as icons or tooltips, makes content easy to
understand. Similarly, keeping critical information visible eliminates the
need to remember previous steps or context, enabling successful task
completion.

Customizable interfaces enable all users to tailor the interface to meet their
specific needs, whether that involves reducing motion, adjusting text size,
or simplifying layouts. This ability to customize helps ensure successful,
empowering experiences for everyone, especially for neurodivergent users
and those with cognitive disabilities.

Accessibility Design Tools - Cognitive Experience Page 239

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Principles

Neurodiversity

Persona: Chloe

“l experience memory loss, difficulty
focusing, trouble solving complex tasks,
and occasional confusion or disorientation.
My dyslexia, dyscalculia, and ADHD affect
my concentration, attention, and ability to
learn. | prefer using different digital helpers
such as tooltips, Agentic Al, in-application
help, and product documentation.”

Cognitive disabilities encompass a range of permanent conditions such as
ADHD, dyslexia, and learning or developmental disabilities, which can
impact how individuals think, process information, and learn.

These conditions often affect memory, problem-solving, attention, and the
ability to understand complex concepts.

This user group represents individuals with dyslexia, dyscalculia, and
ADHD, who rely on helpers and documentation in digital products to
support their focus, attention, and learning. We use the term
Neurodivergent to talk about cognitive challenges.

The term “neurodivergent” is often used as an umbrella description for
people with a variety of neurological or cognitive differences, which may
include conditions like ADHD, autism, dyslexia, or dyspraxia. It is the
opposite of the term “neurotypical”, which is commonly used to describe
individuals whose thinking or behavior differs from what society often
considers typical. These individuals may have unique cognitive strengths
and perspectives that contribute to diverse ways of thinking, learning,
problem-solving and socializing. Neurodiversity includes all human brains;
after all, everyone experiences the world in a slightly different way.

Some statistics:

e 1in 6 people worldwide live with a neurological condition that can affect
cognitive functioning.?

Accessibility Design Tools - Cognitive Experience Page 240

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Around 13.9% of adults in the US report having a cognitive disability,
defined as serious difficulty concentrating, remembering, or making
decisions.®

Dyslexia is estimated to affect up to 7% of the population.t®

ADHD affects approximately 8% of children and adolescents and 3% of
adults worldwide.** 1¢

Situational & Temporary Disabilities

By integrating situational and temporary disabilities into this disability
group, we help design teams address challenges that might not be
permanent but still impact user experience under certain conditions.

Situational and temporary:

Stress-induced cognitive overload: Situations of high emotional stress
(e.g., work deadline or personal crisis) could impair cognitive processing,
making it hard to focus on tasks.

Fatigue: A lack of sleep, burnout, or exhaustion could impair
concentration or memory, like cognitive disabilities.

Multitasking demands: In busy environments, such as open offices or
crowded spaces, coghitive overload can temporarily impact the ability to
process information effectively.

General Design Tips

1.

Clear and Predictable Interfaces:
Sudden layout shifts, ambiguous flows, or inconsistent patterns increase
anxiety and disrupt focus.

Design Tip: Keep navigation, layout, and terminology consistent. Use
progressive disclosure and prepare users for change through tooltips or
banners.

Step-by-Step Guidance:
Difficulty solving problems, remembering previous steps, or interpreting
system feedback.

Design Tip: Break tasks into smaller steps. Use clear instructions, plain
language, familiar icons, and specific feedback messages.

Sensory-friendly spaces:

Sensory sensitivity and difficulties with focusing or maintaining
attention. Visual clutter, motion, or loud sounds can trigger anxiety or
distraction.

Accessibility Design Tools - Cognitive Experience Page 241

Design Tip: Minimize anxiety triggers like visual clutter and motion,
while also recognizing that some users may feel anxious in overly calm
environments. Offer customizable options to create a sensory-friendly
space allowing each user to tailor the experience to their specific
needs: include distraction-free modes, use soft, muted color palettes,
and control luminance.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

4. Reduced Reliance on Memory:
Users may forget context, instructions, or prior steps. Working memory
limitations can lead to errors or abandonment.

Design Tip: Keep critical info visible (e.g., task summaries, form labels).
Use persistent headers or indicators to anchor users in the flow.

5. Visual Structure and Organization:
Disorganized interfaces make it harder to track progress or complete
tasks.

Design Tip: Use progress bars, checklists, or visual groupings to clarify
structure. Minimize decisions per screen.

6. Plain Language:
Complex language or vague content increases cognitive load and
misunderstanding.

Design Tip: Use short sentences, familiar terms, and bullet points.
Highlight key messages and avoid jargon.

7. Routine and Familiarity:
Unexpected design changes disrupt mental models and create stress

Design Tip: Maintain predictable behavior. If change is necessary,
announce it clearly and give support.

8. Customizable Experience:
Cognitive needs vary widely; therefore, a one-size-fits-all design
approach may not meet everyone's needs effectively.

Design Tip: Let users adjust layout density, motion, font size, and
colors. Whenever possible, save preferences across sessions.

9. Visual Support for Comprehension:
Trouble understanding abstract Ul elements or instructions.

Design Tip: Use clear labels, icons with text, and simple metaphors.
Reinforce meaning visually and verbally.

10. Focus-Friendly Layouts:
Difficulty sustaining attention due to cognitive overload or distractions.

Accessibility Design Tools - Cognitive Experience Page 242

Design Tip: Design clean interfaces with a clear hierarchy. Group
related items, reduce noise, and avoid multitasking traps.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Accessibility Design Tools - Cognitive Experience Page 243

Annotations

Coghnitive Annotations

The checklist assists designers in identifying and addressing key
accessibility considerations during the design phase.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Coghitive Experience Checklist

Wayfinding and Orientation
Semantic Strategies

Error Handling

Motion Content

Time Limit

Multiple Ways

Redundant Entry

0000000

Accessibility Design Tools - Cognitive Experience Page 244

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Wayfinding and Orientation

Provide descriptive labels to allow users to understand transfers between
pages. This allows users to locate and orient themselves within a set of
pages. Offer more than one method to find individual screens and content,
like navigation menus and search.

Component Variants

Navigation Identifier

Wayfinding

Navigation identifier

Figure 163: Navigation identifiers promote safe transfers and predictability.
Links transfer users to new pages or sections within a page. Buttons open
dialogs, pop-ups, panels, or expand areas in the screen to show more
information. Menus open pages or sections and are part of a common
navigation structure organized vertically or horizontally, like tab lines or
breadcrumbs.

Search

(Q Wayfinding

Search capability

Figure 164: Search Capability annotation Search capability offers more ways
for users to find what they are looking for. A list of possible destinations
complements the navigation of complex sites or products with several layers
of information and dense content.

Accessibility Design Tools - Cognitive Experience Page 245

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Label and Title Match

" Wayfinding

=% |abel matches title on
destination

Figure 165: The Label and Title Match annotation helps build expectations
for planning and executing routes with labels on buttons, links, and menus
that are carried over to the title on the destination.

Change in Context

E Wayfinding

Change in Context

Figure 166: Change in Context annotation helps eliminate potential confusion
caused by a shift in focus, a change in perspective, or a new setting situation:
like opening a new window, moving the user's focus to a different
component, or a form automatically submitting when a value is changed.
Significant changes like these should only happen when a user has clearly
initiated them.

About Wayfinding and Orientation

The WCAG requirements associated to Wayfinding and Orientation are
directly associated to two usability principles. Predictability helps users
understand their current position within a set of pages and ensures users
know where a link or a button will take them. Consistency relates to
consistent navigation and helps requirements which focus on how users
systematically and coherently navigate and access content.

Wayfinding strategies, including visual cues and descriptive texts, ensure a
clear and consistent exploration. It allows users to identify and plan routes
or navigation flows, maintaining their path and helping them stay on track to
reach desired contents and pages. Wayfinding is commonly associated with
transfers, also known as navigation. It is also supported by key Ul elements,
such as links, buttons, menus, search and breadcrumb.

Navigation ID

Users orient themselves looking for elements strategically located on the
screen. They will have a successful exploration if these elements are
placed consistently across different pages, accounting for primary,
secondary, and tertiary navigation patterns. Wayfinding allows them to
ascertain their position and plan new routes.

Accessibility Design Tools - Cognitive Experience Page 246

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Navigation identifiers help users understand where they are within a digital
product, making it easier to navigate, avoid getting lost, and stay oriented,
especially in multi-step processes or large content structures.

The WCAG 2.4.8 Location (AAA) ensures that users can determine where
they are within a website or application. Besides helping those with
coghnitive disabilities, this strategy also helps screen reader users, or
anyone exploring unfamiliar content. This means that users should have
access to information about their current location in the interface by
identifying navigation identifiers, such as:

¢ Breadcrumb navigation and trails (e.g., Home > Products > Electronics >
Laptops).

e Clear and unique page titles that reflects the content or section.

¢ Visible section headers in complex flows.

e Menu lists or navigation tabs. Highlight the current navigation state in
menus and tabs showing which item is currently active.

¢ ARIA landmarks or headings for screen reader users. Use semantic
structure and ARIA landmarks to support assistive technology.

Navigation identifiers are common Ul elements that clarify information
architecture and help users identify their current location. For example,
titles and highlighted navigation controls, such as breadcrumbs, tabs, or
menus, signal where a user is. Long navigation sequences can confuse
people with short attention spans, so clear indicators benefit users with
memory, attention, or learning challenges. Screen reader users also rely on
page titles, headings, and landmarks to understand their position in the
overall structure.

Labels for links, buttons, and menus also contribute to wayfinding and
predictability.

Search

Search capabilities offer another way for users to find what they are looking
for. WCAG success criterion 2.4.5 Multiple Ways (AA) recommends
providing users with multiple alternatives to locate a page or content within
a product, unless the page is a result of, or a step in, a process.

Still, in this context, a consistent placement of a help mechanism should be
available to users, same place across different pages. According to WCAG
3.2.6 Consistent Help (A), this feature should be offered in the same order
among the screens or pages.

Label name matches title on destination

Accessibility Design Tools - Cognitive Experience Page 247

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Meaningful text, on labels and titles, is not only critical to people with
coghnitive disabilities. It also helps blind users manage expectations based
on what they hear when using navigation strategies available in screen
reader tools: headings, links, buttons, or lists. Preserving the context after
selecting an option, button or link is paramount to orient blind users. Match
the title or header of the destination with the label description announced
in the trigger (button or link). The text on both ends should closely match
each other to reassure the user about a navigation choice.

Differentiating links from buttons visually and semantically makes it clear to
users what to expect from the interaction. This clarity helps everyone
understand what to expect when interacting with links and buttons. By
differentiating these elements, designers can ensure both clarity and
predictability.

Change in Context with Links and Buttons

A change of context is a major change to the content or layout of a page
that, if unexpected, can disorient a user. This includes things like opening a
new page, moving the focus of the user to a different component, opening a
dialog or a popover, or an automatic form submission when a value is
changed. The core principle is that these significant shifts should only
happen when a user has clearly initiated them.

Links and buttons are common triggers found in all digital products, but
they have different transportation expectations. Links opens new pages.
Buttons execute tasks within the page: open dialog, open popover, expand
and collapse sections. While a link transfers the user to another page, a
button keeps the user in the same page.

To ensure users clearly understand where a link will take them, the
following WCAG guidelines apply:

e 244 Link Purpose (A): The purpose of each link must be clear, either
from its text or surrounding context.

e 249 Link Purpose (AAA): The link text alone must express its
purpose, without relying on adjacent content.

« This helps users, including those with cognitive impairments or using
screen readers, navigate efficiently and independently.

Any change in context initiated by buttons or links should be
understandable, clear, and provide a predictable navigation.

Sometimes links direct users to an external application. This pattern is
usually indicated with an icon next to the link that informs the user in
advance where that user will be redirected.

Accessibility Design Tools - Cognitive Experience Page 248

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)

O

Examples

Q Wayfinding
Search capability

= Procurement Search Q

Q Wayfinding
Search capability

= Procurement Search Q

. Wayfinding
Marta Maya Request - Notebook Serie S-an NPT Rt
destination
Home / Procured Items / Notebook Serie / Marta Maya Reque

Notebook Serius

Home / Procured Items / Notebook Serie

Notebook Serie | Product details
J Ordered on 8 February 2022
i

Tech for geeks equipped with state of the art technology for designers

Quatity: 3 units

| Delivery requires attention &

Wayfinding
Who Requested Qe BNEWATEIERTR

destination

It - Joe Liam
{ Sales Executive

Marta Maya
Track delivery | Cancel 3 orders Sales Executive

Shipping Address
2345 Rue Saasqui Ap 34 City, State

My current computer is resetting and affecting

must travel in one month and |
Wayfinding bquipment can be delivered on time.
O—0 Label matches title on
destination

H on October 3, 2019

Marta Maya
Sales Executi

&

Notebook Serie

Product details

Ordered on 8 February 2022
1 out of 3 units

Tech for geeks equipped with state
of the art technology for designers

Waiting for a replacement to My current computer is
resetting and affecting my...

keep working in my

projects...
Requested on October 3, 2019

Requested on November 21, 2019
View More

View More

Wayfinding
Wayfinding Navigation identifier
Navigation identifier

Figure 167: Wayfinding and Orientation annotations used on procurement
pages. The page on the right is opened by activating “View More” buttons.
The Title/Label/Breadcrumb Step of the right page is composed of
respective label/name elements of the previous page, meeting expectations
for orientation. In both pages, search capability is kept.

Shared Benefits

Temporary Disabilities

All users

People with temporary cognitive issues caused by stress, fatigue, illness,
medication, distractions, or multitasking, also benefit from clear wayfinding
and orientation. Providing descriptive labels and titles, consistent
navigation, and more than one method to locate content reduces the
mental effort required to stay on track, helps users quickly reorient after
interruptions, and prevents mistakes or repetition. The wayfinding and
orientation annotation ensures a more resilient experience including those
facing temporary challenges in focus and memory.

Accessibility Design Tools - Cognitive Experience Page 249

For Developers

Discuss with the designer the workflows and the controls to be used for
transportation. Double-check in review cycles if navigation targets are
named appropriately according to the labels of the navigation triggers.

Make sure that backward navigation really leads you to the last position in
the workflow or navigation step.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

References

WCAG 2.2 Reference

2.4.4 Link Purpose (In Context) (A)

2.4.5 Multiple Ways (AA)
2.4.9 Link Purpose (Link Only) (AAA)
2.4.8 Location (AAA)

3.2.3 Consistent Navigation (AA)

3.2.6 Consistent Help (A)

Accessibility Design Tools - Cognitive Experience Page 250

https://www.w3.org/WAI/WCAG22/Understanding/link-purpose-in-context.html
https://www.w3.org/WAI/WCAG22/Understanding/multiple-ways
https://www.w3.org/WAI/WCAG22/Understanding/link-purpose-link-only.html
https://www.w3.org/WAI/WCAG22/Understanding/location.html
https://www.w3.org/WAI/WCAG22/Understanding/consistent-navigation.html
https://www.w3.org/WAI/WCAG22/Understanding/consistent-help.html

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Semantic Strategies

Semantics are expressed both visually and programmatically, guiding users
to comprehend, navigate, and orient themselves. These are essential
coghnitive processes. This term refers to strategies that clearly represent
their intended purpose. That meaning refers to the significance, purpose, or
definition of something that is conveyed through language, symbols, or
actions.

Both visual and programmatic elements support comprehension and
orientation, which are core cognitive tasks. Semantics refers to the meaning
of a Ul element, ensuring that it represents what is intended, with meaning
conveyed through language, symbols, or actions. This overlap between
perception, cognition, and semantics in accessibility covers visual semantic
cues, such as color, icons and spacing. Also, it adds up to clarity and
reduces reading complexity and helps screen reader users by adding roles,
properties and relationships.

Component Variants

Semantic Strategies

2+ Semantic Strategies

Shape, Text (clear content), Color,
Position, Role, Description, Info and
Relationship

Figure 168: Use this annotation to provide a reassurance that semantics are
respected using different methods: Text, Icon, Color, Role, Description, Clear
Content, Pattern, Look and behave

About Semantic Strategies

This annotation was called ‘Sensory’ and located in the visual experience in
the first edition of these Design Tools Guidelines. The change to Semantic
Strategies aims to create a direct relationship of information and
perception not only visually, but also consistent to various assistive tools.
Although semantic concept for design can be based on relevant visual
cues like color-coding status icons or conveying information via shape, the
rationale to move the annotation to the Cognitive Experience checklist is
grounded in the underlying meaning, structure, and interpretability that
converge. Semantics is the meaning of an element, and meaning defines its
purpose. In web development, this relationship is essential for accessibility.
The purpose of the content is important for sighted and blind people.

Accessibility Design Tools - Cognitive Experience Page 251

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Those who are color blind and those who are neurodivergent rely on visual
cues to perceive semantics (color, icon, shape, text, position). Screen
reader users rely on roles and properties cues, and the comprehension of
these technical terms (roles and properties) goes beyond visual
perception and gets into cognitive territory.

Consistency is what all of them expect to find: consistency of meaning,
purpose, and interactions.

We simplified the annotation on the design to include declarations of how
semantics are achieved in that design. This broadens the reach of WCAG
standards by including the Success Criterion 1.3.1 Info and Relationships
from the WCAG 2.2 to ensure roles and properties match the visual
outcome. The proposal is to avoid changing aria roles to maintain the
intention consistently when communicating with a blind user (using roles)
or a sighted user (using visual elements). All items that look like links
should act like links; the same goes for buttons.

The semantic concept relies on the ability to explore two or more
strategies to trigger different senses. This is especially helpful to
differentiate similar elements such as statuses, items on a wizard, progress
trackers, graphs, and data visualization. Add a second signifier, or more if
needed, to convey messages unequivocally. Semantics are applicable to
Text, Icon, Color, Role, Description, Headings structure, Clear Content,
Pattern, Look, interactions, and behaviors.

Visual Semantics

Visually safe color semantics are still perceived in greyscale. When
converting a colorful screen to grayscale, the meaning of all semantic
colors used in the design should be preserved.

Use semantic annotation to validate the usage of two or more channels to
present information, including alternatives to the colors, such as text,
shape, position, decoration, and orientation. These alternative sensory
channels complement color since color alone should not be used to
convey a message. If a message is not also communicated through other
alternative sensory channels, a user who is color-blind, blind, or has low
vision may not be able to understand it.

Designing for at least one more sensory channel using alternatives to
stimulate visual senses: color and text or color and shape. If all the
information maintains its meaning and purpose on grayscale, you have
successfully achieved a sensory concept for elements represented by
color. Color, shape, size, or location without text may not be understood by
a color-blind person, blind users, or users with low vision.

Accessibility Design Tools - Cognitive Experience Page 252

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Do not use color alone to convey a message. If shape, size, or location, or
instructions are not provided with text, a color-blind person, blind users, or
users with low vision may not be able to understand them.

Colors Shape & Filling Sizes Positions

% m B -
L X -»er
0@ b

[°]
Figure 169: Multiple rectangular areas with a dot inside. every area has the
dot at a different position

Directions Sounds Text & Decoration
GUDD i D 2D This is an underlined link
& Q¢ d Black standalone link
A Invisible Label

Figure 170: Different semantics - Directions, Sounds and Text Styles or
Decorations

Hidden Semantics

Screen readers are expected to announce semantic information in addition
to the visual information presented. Every semantic content communicated
visually, such as color, shape, position, must be accessible to screen
readers. If visible text is provided, such as a status name, it should be able
to communicate semantic information by itself. If this is not sufficient,
provide invisible labels, text alternatives, invisible headings, and
descriptions.

But sometimes the visual semantics are associated with names like roles
and properties used on Ul controls. The expectation in this case is to
maintain consistent semantics between visual and screen reader
terminology, avoiding alterations. For example, a link that appears as a link
should behave like a link. A link always directs the user to a new URL page,
except when it transports the user to another section within the same page,
such as with anchor links. In contrast, a button should both look and
behave like a button. However, there are times when a button performs the
role of a link, and this is perfectly acceptable. Typical button labels, such as
Submit, Save, Add, and Create, often guide the user to a new page.

Accessibility Design Tools - Cognitive Experience Page 253

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Address how different users will give meaning and consistently understand
information, instructions and interactions, visually or through screen
readers. Observe how properties and roles can provide the same
experience to both sighted and blind users.

Semantics for Screen Readers

Using semantic annotations helps ensure that ARIA roles and properties
are properly defined, allowing screen readers to accurately interpret and
announce content for users who rely on assistive technologies.

A rule of thumb for Links vs. Buttons is that buttons and links are visually
distinctive. Buttons should look like buttons, and links should look like
links.

The button keeps the user within the page. Links transport the user to
another page (same or new browser tab).

The types of actions performed by buttons are distinctly different from the
function of a link:

e Use a button when the action causes a change on the same page,
like opening a popover or a dialog.
e Use a link when navigating to another page (URL).

Links are used to direct users away from the current page, but they can also
be used to jump to a different section within the same page (anchor bar,
tabs).

Elements on a webpage convey meaning through their appearance, such as
a button clearly looking like a button or a link presenting itself as a link.
Screen reader accessibility features rely on assigning appropriate roles that
align with how each element is visually designed. This ensures that
individuals using assistive technology can easily recognize and interact with
every part of the page.

Sighted users form expectations based on clear visual style and thoughtful
content choices. A link should appear clickable even before a mouse hover
over it, which means it needs to be styled to signal interactivity. Using color
and underline are two common ways to indicate that something is a link.

Screen readers announce the role, which should match the visual elements
that sighted users view on the screen. When a blind user hears the
announced role, they form expectations about what happens next. For
example, if they hear "link," they know it will take them to another page; if
they hear "button," they know it will perform an action and keep them on
the same page.

Accessibility Design Tools - Cognitive Experience Page 254

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Semantic Structure

Semantic text principles ensure that content is meaningful, well-structured,
and accessible to all users. Providing clear, meaningful, structured and
accessible content also contributes to semantics. Some examples are
proper use of headings, lists, emphasis, statuses, and labels (for links and
buttons). The goal is to enhance readability and comprehension while
providing clear context and information.

For example, headings should follow a logical hierarchy (H1 for the main
topic, followed by H2s and H3s for subsections) to convey structure, rather
than relying on visual styling alone.

Lists should be correctly formatted using , , or <dl> elements to
group related information meaningfully.

Additionally, links should have descriptive text that conveys their purpose
rather than vague phrases like "Click here." By applying semantic text
principles, content becomes more inclusive, reduces cognitive effort, and
improves the overall user experience.

We propose five key principles to guide UX writers in formatting and
structuring text to improve readability, comprehension, and navigation,
particularly for assistive technologies.

1. Proper Heading Hierarchy

Use headings (<h1> to <h6>) to create a clear structure, ensuring logical
flow. The <h1> should represent the main topic, followed by <h2> for
sections, <h3> for subsections, and so on. Avoid skipping heading levels
(e.g., jumping from <h2> to <h4>), as it disrupts assistive technology
navigation.

2. Meaningful Link Text

Links should describe their purpose, avoid “Click here”. Repeating links
should be prepared for screen readers, using a reference for association
(ariaLabelledBy). Avoid generic phrases that require users to rely on
surrounding context to understand the function of the link. Use an
appropriate aria element to provide a clear label or description, like title
attributes if extra clarification is needed.

3. Emphasis and Meaning, Not Just Style

Use for important content and for emphasis, rather than
relying solely on bold or italic styling. Avoid using all caps for emphasis, as
it can be harder to read and may be misinterpreted by screen readers. Use
meaningful status names (labels). If color cannot be perceived or

Accessibility Design Tools - Cognitive Experience Page 255

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

translated to statuses categories, the label alone will be able to convey the
semantic.

4. Avoiding Ambiguity and Redundant Text

Keep text concise and to the point, avoiding unnecessary jargon. Ensure
that error messages and instructions are direct and actionable (e.g., “Enter
a valid email address” instead of “Invalid input”).

Identify Purpose

Lastly, the WCAG 1.3.6 Identify Purpose (AAA) bridges the gap between
what something looks like and what it is meant to do, helping designers
and developers build interfaces that can adapt meaningfully to diverse
user needs. This requirement suggests that users adapt the interface to
their needs, making the purpose of elements clear to assistive technologies
so that common user interface components and icons are understood
semantically, whether through symbol systems, simplified language, or
personalized Ul tools. This matters because it:

e Helps users who rely on symbol-based assistive technologies, cognitive
support tools, or custom Ul adaptations.

e Improves predictability, especially for users with cognitive disabilities or
low digital literacy.

e Enables assistive technologies to personalize the interface, such as
replacing text with symbols or grouping functions by type.

Accessibility Design Tools - Cognitive Experience Page 256

@
O
c

2
o
0]
Q
X

(i
o

2

=
=
oD
o)

O

Examples

Visual Semantic

= Il Bees
l..un...nm
Birds Facebook
B Squirrels 3 ’
10 - e
9 B Flies Instagram
*—
Linkedin
Il Bees
[
Birds Facebook
B Squirrels
9 H Flies Instagram
= *~—
= LinkedIn

2+ Semantic Strategies

Shape, Text (clear content), Color,
Position, Role, Description, Info and
Relationship

Figure 171: Data visualization with treatment to differentiate data not only
with colors, but line types and patterns to meet the needs of blind color
users

Label

Value

@ The value should contain numbers only

2+ Semantic Strategies

Label

Shape, Text (clear content), Color,
Value Position, Role, Description, Info and
Relationship

e The value should contain numbers only

Figure 172: Error message treatment to indicate an error has occurred by
showing an icon, beside the red color

Accessibility Design Tools - Cognitive Experience Page 257

2+ Semantic Strategies

()
O Shape, Text (clear content), Color,
= Position, Role, Description, Info and
G_) Relationship
S
()
o
x
Ll , .
) 4 Alex Laurel @& @k y Alex Laurel [® 3
= i Sales Executive i Sales Executive
=
bCD Webinar with Coca Cola gﬁld Nestle Webinar with Coca Cola and Nestle
8 regarding future service ak®itability regarding future service ak¥®iability
Feedback Sent on November 21, 2019 Feedback Sent on November 21, 2019
Status Status
Category: Articles Category: Articles

Figure 173: Link is still perceived because the text is not only blue, but also

underlined
2+ Semantic Strategies
Shape, Text (clear content), Color,
Position, Role, Description, Info and
Relationship
Project Status Status Project Status Status

Website Redesign Website Redesign
Mobile App V2 Mobile App V2

Accessibility Audit © Audit results Accessibility Audit © Audit results
Onboarding Workflow Onboarding Workflow @
Payment Integration Payment Integration

Figure 174 Statuses are recognized if color is not available by their labels or
icons

Accessibility Design Tools - Cognitive Experience Page 258

Semantics are used to inform about:

e Colors + Labels + Icons + message (status of the system or element)

e Components (links vs buttons, tags and object status, strip messages,
dialog message)

e Font size on Heading to indicate hierarchy

Color combinations to avoid:

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Reference

L-cones are impaired

Protanomaly

Deuteranomaly

Tritanomaly

Achromatomaly

L-cones are missing

Protanopia
Deuteranopia

Tritanopia

Achromatopia

Figure 175: The sensory concept supports design decisions where colors are
used to represent something such as a state. Make informed decisions about
combining colors. Investigate how a person with protanopia or deuteranopia
sees green and red.

Avoid problematic color combinations when possible:

e Green & Black
e Green & Red

o Green & Grey
e Green & Brown
e Green & Blue

e Blue & Gray

e Blue & Purple

Accessibility Design Tools - Cognitive Experience Page 259

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)

O

Shared Benefits

Temporary Disabilities

All users

Stress, fatigue, illness, medication effects, or environmental distractions
may reduce the mental load required to interpret and navigate an interface.
Clear semantic design will make it easier for these people to stay focused
and avoid errors when attention or memory is impaired. Visual cues like
icons and spacing, straightforward text, and consistent programmatic
semantics help users quickly understand where they are, what actions are
possible, and how to move forward without confusion. Clear semantics
support comprehension and orientation, easing task completion during
temporary limitations.

Vision and Color Limitation

¥ Visuals

People who are color blind benefit from clear semantics because meaning
is conveyed through multiple cues, like labels, icons, or patterns. Rather
than relying on color alone, alternative or complementary information
reduce ambiguity and support accurate comprehension.

For Developers

Check with the designer in the review cycle that the semantics for a
respective Ul part are expressed visually and non-visually in multiple ways
using different technical attributes for color, text, relationships, etc.

Accessibility Design Tools - Cognitive Experience Page 260

References

WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

1.3.3 Sensory Characteristics (A)

1.3.6 Identify Purpose (AAA)

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Accessibility Design Tools - Cognitive Experience Page 261

https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/sensory-characteristics.html
https://www.w3.org/WAI/WCAG22/Understanding/identify-purpose.html

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Error Handling

Prevent errors from happening. When errors occur, clearly identify them.
Allow users to review, correct, or cancel inputs so that they can avoid or fix
errors. Associate an error with its location. To handle errors, use sufficient
descriptions so the user can understand what happened and make
suggestions to fix it.

Component Variants

Error Prevention

Q Error Prevention

User knows how to avoid errors

Figure 176: Error prevention helps users with information to get things right
from the start.

Error Identification and Error Recovery

Error Identification & Error Recovery
User perceives error(s) and knows how

to fix it.

Figure 177: Error Identification and Error Recovery help users to recover from
mistakes.

About Error Handling

Suppose the input of a user creates a legal commitment, involves a
financial transaction, or results in data being lost or modified in data
repository systems. In such cases, the application must ensure that the
user can check, correct, or cancel their actions.

Error Prevention

Error prevention helps users avoid errors, while error identification and
recovery allow the user to fix errors if they occur.

Preventing errors from happening should be a primary objective of the
designer when creating forms. The interface must describe how a form field
should be filled out, and input fields should refuse incorrect values and
redirect users to enter correct values.

Accessibility Design Tools - Cognitive Experience Page 262

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Efficient error handling saves vast amounts of effort for:

e Finding errors
¢ Navigating to the element causing the error
e Resolving the error by using pre-selected values or hints.

Error Identification and Error Recovery

When error prevention is not possible, the application must allow the user
to identify the error, review, correct, or cancel an input. The designer should
anticipate such scenarios and address the following:

e When and how the error will appear.

e How the error message will address the problem to enable user to
handle the error.

¢ Along with a detailed description of the error, what resources will be
offered to the user to fix it.

Efficient error handling should clearly identify where an error has occurred,
describe the nature of the issue, and offer practical solutions for correction.
This approach greatly streamlines troubleshooting and reduces
unnecessary effort.

Context-specific suggestions presented to the user next to the form field
enhance error identification awareness and enables the user to recover
faster from the error. This strategy helps users of screen readers, as it
provides quick access to the specific information related to the input error.

When error validation cannot be implemented while the form is being filled
out, error messages are presented in the form fields. These messages
inform and invite the user to fix issues. When errors are resolved, the error
messages disappear visually and screen reader updates accordingly. A
positive confirmation message is commonly used to notify users that the
form was successfully completed or successfully submitted.

Accessibility Design Tools - Cognitive Experience Page 263

Examples

()
9}
=
9 My Tour Settings X
—
()
% Profile Instructions ~ Payment
L
(O] (*) Mandatory field
=
= Name * Tour Type
50
Kim Q Search
o
o

Tour Distance Time Lengh

(abe Km Error Prevention
Pravides opportunities to correct information informing “Unit”

| A Only numbers accepted
L -

Meeting Point *

[Rue de la Maison J

[\
Q Missing number |
AN

City Zip Code

Cancel

’

My Tour Settings X

Confirm information before publishing

Q Error Prevention
User can review and correct mistakes before publishing

PROFILE

Name Mary Liam

Tour Type Cultural

Tour Distance 10 Km

Time Lengh 7 hours

Meeting Point 234 Rue de la Maison, Paris, Y167
INSTRUCTIONS

Bring with you Confortable shoes
Get to the meeting Bus 345, Metro Line A
paint

PAYMENT

Accepted payments Credit Cards

Publish Edit

’

Figure 178: Error Prevention annotation used to indicate respective areas or
functionality in the application design

Accessibility Design Tools - Cognitive Experience Page 264

Personal

Information

Street / Number:*

South Gettysburg Avenue 369 |

Postal Code / City *

I AAA Heidelberg |

Country: *

@
O
c

2
o
0]
Q
X

(i
o

2

=
=
oD
o)

O

Germany v
| |

Contact

Email: *

I |
02131|01]o1] x

Personal, Information

o Enter a valid postal code : |
Postal Code

Special shipping conditions apply.
A C
ountry

Personal, Contact Error Identification & Error Recovery
Enter an email address § — .
> B 3 Error type and description with

reference to error location

o User name JMILLER was assigned.
User

Q2 m Cancel

Figure 179: Error Identification & Error Recovery annotation used to indicate
respective applied patterns in the application design

Accessibility Design Tools - Cognitive Experience Page 265

Shared Benefits

(O]

O

C

9

E . ege_ o
L% Temporary Disabilities
(O]

= All users

=

C

an

o

o

Users with temporary limitations due to fatigue or distractions, expect the
application to support them during error handling by reducing the mental
and physical effort needed to recognize and to recover from errors,
preventing task abandonment.

Without Vision

Screen Reading

Blind users also benefit from clear error handling. Error messages and
programmatic feedback ensure they can detect and correct mistakes
without relying on visuals.

Accessibility Design Tools - Cognitive Experience Page 266

For Developers

()

9}

k5, All developers should provide mechanisms to indicate and to correct
g)_ errors if they occur by using respective controls or patterns from their
X framework inventories.

()

=

= References

&

O WCAG 2.2 Reference

1.3.1 Info and Relationships (A)

3.1.3 Unusual Words (AAA)

3.1.4 Abbreviations (AAA)

3.1.5 Reading Level (AAA)

3.3.1 Error Identification (A)

3.3.3 Error Suggestion (AA)

3.3.4 Error Prevention (Legal, Financial, Data) (AA)

Accessibility Design Tools - Cognitive Experience Page 267

https://www.w3.org/WAI/WCAG22/Understanding/info-and-relationships.html
https://www.w3.org/WAI/WCAG22/Understanding/unusual-words.html
https://www.w3.org/WAI/WCAG22/Understanding/abbreviations.html
https://www.w3.org/WAI/WCAG22/Understanding/reading-level.html
https://www.w3.org/WAI/WCAG22/Understanding/error-identification.html
https://www.w3.org/WAI/WCAG22/Understanding/error-suggestion.html
https://www.w3.org/WAI/WCAG22/Understanding/error-prevention-legal-financial-data

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Motion Content

Animations can be stopped or disabled. Video can be paused or stopped.
Automatically played audio content can be muted. The volume of the
automatically played content can be changed independently of the system
volume. Generally, avoid flickering and flashing content.

Component Variants

Autoplay & Motion-Based Content

~ Motion Content
o o Q ﬁ Flickering safe, Pause, Stop, Hide

Figure 180: Use to indicate content affected by autoplay or motion based
(moving or updating content). Indicates also where users can find controls or
settings to control motion.

About Motion Content

Animation, video, and audio streams attract the attention of the user. But
content that moves or auto-updates can be a barrier to anyone who has
trouble reading static text. It also affects users who have difficulty tracking
moving objects and users who use screen readers. Screen reader users find
it difficult to listen to speech output if other audio files are played
automatically at the same time. Users with hearing loss are also distracted
by content played automatically.

All users must be able to pause, stop, or hide videos, animations, and
audio. Any automatic audio or video content must allow users to control
and change the volume independently of the system volume.

Common examples include motion pictures, synchronized media
presentations, animations, real-time games, and scrolling stock tickers. Use
the annotation ‘Multimedia’ to point to where users can find the controls to
pause, stop, and hide moving content.

Certain groups, particularly those with attention deficit disorders, find
blinking or flashing content distracting, making it difficult for them to
concentrate on other parts of the page. Therefore, avoid flickering and
flashing content. Ensure that the application has no flickering content that
flashes more than three times per second. If your component or screen
uses a content in motion, identify it as “Flicker safe” using the annotation to
indicate that content is secure for sensitive users with epilepsy or seizures.

Accessibility Design Tools - Cognitive Experience Page 268

Refined terminology for UX and Accessibility Guidelines related to motion
includes three groups: Autoplay & Motion-Based Content, Moving &
Updating Content, and High-Risk Motion Content.

Autoplay & Motion-Based Content:

e "Auto playing Media" — Covers videos, GIFs, and animations that start
playing without user interaction.

e "Auto-advancing Content" — For carousels, slideshows, or other elements
that change automatically.

e "Motion-Based Content" — Includes parallax effects, animated scrolling,
and any Ul elements that respond to movement.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Moving & Updating Content:

¢ "Moving Content" — Covers auto-scrolling text, ticker messages, and
elements that shift without user interaction.

e "Auto-Updating Content" — Refers to changing dashboards, live sports
scores, or stock tickers that refresh dynamically.

High-Risk Motion Content (Accessibility Considerations):

¢ "Flickering Content" — Any flashing, blinking, or strobing elements (e.g,
fast animations, certain video effects). We recommend following WCAG
guidelines 2.3 Seizures and Physical Reactions on the three flashes or
below threshold to avoid seizures or discomfort.

e "Looping Motion Content" — Covers endlessly repeating animations or
videos that might be distracting or overwhelming.

Accessibility Design Tools - Cognitive Experience Page 269

@
O
c

2
o
0]
Q
X

(i
o

2

=
=
oD
o)

O

Examples

y Motion Content -
o ° Q f} Flickering safe, Pause, Stop, Hide %

0:09 | 2:05

Figure 181: Volume of automatically played audio content can be changed
independently of the system volume. Videos can be paused or stopped.
Animated controls must be created to be flickering safe, like busy indicators.

Accessibility > Visual effects

.3

Always show scrollbars of @)

<

*
Y]

Transparency effects on @D

Make some window backgrounds slightly transparent

= Animation effects Off (.::'

- Motion Content
(0o = REE.,

Figure 182: Animations can be hidden or disabled

Accessibility Design Tools - Cognitive Experience Page 270

Shared Benefits

Without Vision

Screen Reading

/, }'

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)

O

Observing autoplay, motion, and dynamic content during design helps
screen reader users by preventing unexpected changes that can disrupt
navigation, shift focus, or overload announcements, as well as ensure a
stable, predictable experience. It also allows designers to provide proper
pause controls, ARIA live regions, or alternatives, making content updates
accessible without overwhelming or disorienting users relying on assistive
technology.

For Developers
Ensure by providing respective options that:

¢ Animations can be stopped or disabled

e Video can be paused or stopped

e Automatically played audio content can be muted

e The volume of the automatically played content can be changed
independently of the system volume

Generally, avoid flickering and flashing content

References

WCAG 2.2 Reference

2.2.2 Pause, Stop, Hide (A)

2.3.1 Three Flashes or Below Threshold (A)

2.3.2 Three Flashes (AAA)

Accessibility Design Tools - Cognitive Experience Page 271

https://www.w3.org/TR/WCAG22/#pause-stop-hide
https://www.w3.org/WAI/WCAG22/Understanding/three-flashes-or-below-threshold.html
https://www.w3.org/WAI/WCAG22/Understanding/three-flashes.html

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Time Limit
Provide options so that users can disable, customize, or extend time limits

before they expire. This should indicate areas on the screen that are
refreshed automatically or due to user interaction.

Component Variants

Time Limit - Timeout Progress

@ Time Limit: TIMEOUT PROGRESS

Data entered or progress tracked

Figure 183: Indicates that the Ul prepares users for system events tied to
timing (e.g, session expiration or auto-logouts). A message confirms data and
progress will be saved.

Time Limit - Timeout Info

Time Limit: TIMEOUT INFO
Data loss due to inactive

Figure 184: Indicates that the Ul prepares users for system events tied to
timing. A message reinforces the risk of data loss or progress reset due to
inactivity or predefined time limits.

Time Limit - Timeout Interruption Expected

Time Limit: INTERRUPTION EXPECTED
Automatic Refresh, Alerts, Update

Figure 185: Indicates that the Ul prepares users for system events tied to
timing (e.g, session expiration or auto-logouts). A message reinforces the risk
of data loss or progress reset due to inactivity or predefined time limits.

Time Limit — Configuration

r@\ LIRS CONFIGURATION
Turn off, Adjust, Extend

Figure 186: Use this annotation to indicate where users can adjust and
manage time to be turned off, adjusted, or extended.

Time Limit — Content Refresh Area

Accessibility Design Tools - Cognitive Experience Page 272

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

g Time Limit: CONTENT REFRESH _____

Figure 187: Indicates the area in the Ul that will be affected by a refresh upon
time limit

Time Limit — Visual Status Update

Figure 188: System Status Awareness for Background Processes ensure users
are aware of ongoing background processes and can access or perceive
system status at any time.

About Time Limit

Time-based interaction, such as automatic updates, periodic processes,
and session expirations, can interrupt tasks. These actions may erase work
and confuse users.

This separation highlights the relationship between time-based interactions
and their specific effects, making the information easier to digest. The

Time Limits annotation helps designers identify these risks early, giving
users predictability, control, and protection.

According to WCAG 2.2.3 No Timing (AAA), content must not depend on
time limits for its functionality, unless timing is essential, such as with live
events. Users should be able to complete tasks at their own pace.
However, sometimes this is not possible, and this chapter explores the
proper handling.

Automatic updates, session expirations, auto-logout, form timeout,
dashboard refresh, expiring access to a task, and timeouts can introduce
unexpected barriers, disrupt user tasks, or even result in data loss. Any
process that fires after a set period counts as a time limit. Such triggers can
be major barriers for people who need extra time to read, think, navigate, or
act.

A poorly designed time constraint may cause confusion, frustration, lost
work or loss of data. Thoughtful and well-considered time limit design
shields users from disruption and protects users from disruption
supporting a smoother, more accessible experience.

Designers should aim to avoid time-dependent features whenever possible
or minimize the use of time-dependent features if possible. When time
constraints are necessary, interfaces must offer users clear control and
predictability. If unavoidable, give users control in this order of preference:

Accessibility Design Tools - Cognitive Experience Page 273

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

a. Disable the time limit entirely (most inclusive).

b. Customize the duration of the time limit. Configure the length to suit
individual needs.

c. Extend it on demand via a clear prompt before it expires. Request more
time before the limit expires.

The Time Limits annotation supports inclusive design by helping teams
plan for four critical aspects:

Timeouts

Content Refresh
System Status Updates
Configuration Options

These dimensions ensure users are informed, protected from unexpected
behaviors, and empowered to complete tasks at their own pace. Disabling
time limits is always preferred. If that is not possible, customizing them or
offering time extensions is essential to support diverse user needs and
reduce cognitive load.

When users understand and control the timing of system behaviors, they
avoid unwelcomed surprises and interact with greater confidence. This
leads to more inclusive, frustration-free experiences.

Timeouts

Timeouts include three scenarios that may or may not notify users about a
timeout:

1. Data entered or progress tracked: when progress and input data is saved
and tracked when time is out.

2. Data loss due to inactivity: when progress or input might be lost due to
inactivity.

3. Interruption Expected: anticipate and inform about automatic refreshes
or system updates.

WCAG 2.2.6: Timeouts (AAA) state that users must be warned of any
inactivity that could result in data loss unless the data is preserved for
more than 20 hours when the user does not take any action. The Timeout
annotation reminds designers to notify users about possible data loss due
to inactivity, alert them of upcoming or ongoing interruptions, and provide
reassurance that their data and progress have been saved.

Content Refresh

Accessibility Design Tools - Cognitive Experience Page 274

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Informing users about content that will refresh after a time limit is a
requirement covered by WCAG 2.1. The relevant WCAG 2.2.1: Timing
Adjustable defines that content updates after a time limit, such as auto-
refresh, and users must be able to turn off, adjust, or extend that time
unless it is essential. This definition is relevant to inform users which area
will refresh and prepare them to act within the time limit or allow support
for adjusting timing.

The WCAG 2.2.2: Pause, Stop, Hide (level A) also supports this requirement.
For moving, blinking, scrolling, or auto-updating information, users must be
able to pause, stop, or hide the content unless it is essential. If the
refreshed content is auto-updating, such as a dashboard or notification
panel, controls must be offered to manage the update behavior, see Time
Limits Configuration.

System Status Updates

Communicate clearly when system behaviors are time-triggered, helping
users anticipate outcomes and maintain focus. When users are informed
and in control of timing, they avoid surprises and complete tasks more
confidently. Use messages with precise information about timeout
outcomes.

Communicating system status clearly becomes essential when time-based
behaviors are in play, examples include session timeouts, auto-logout, or
delayed content refresh. Users need to know what is happening, how much
time they have left, and what action (if any) is required.

But the Status Update also includes visual and verbal cues that show
system status in real time, using consistent indicators such as countdowns,
progress indicators, alert messages, spinners, progress bars, and badges.
Status Updates represent the start and end of the process and stop when
complete. The design should focus on clarity and give control to the user
with plain, concise messages (“Uploading 45 %..”) and, where possible,
buttons to pause, resume, or cancel. This helps reduce anxiety, supports
informed decisions, and gives users a sense of control.

Assistive Tech requires ARIA live region or role="status" / aria-busy="true"
so screen readers announce updates without shifting focus. Keyboard
Access should be provided to reach the status info and dismiss controls
reachable with the keyboard.

This requirement is in alignment with WCAG Success Criteria:

e 4.1.3Status Messages to announce updates programmatically,

Accessibility Design Tools - Cognitive Experience Page 275

e 3.2.20n Input to warn the user before auto-refreshing on user action,
and

e 222 Pause, Stop, Hide to allow users to stop auto-updates, which may
distract.

Clear status feedback, combined with timeout and refresh annotations,
ensures a smoother, more accessible experience across the board.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Configuration Options

Including configuration options in the application provides users with
flexibility regarding time limits. While information is good to keep users
aware, it is preferred when the time limit can be extended and controlled.
Designers address time outs by providing options to the user to disable
time limits (switch off), customize the length of time limits by requesting
more time before a time limit occurs, or extend the time before the time
limit expires.

Time limit configuration helps with:

¢ Refresh content after a certain amount of time

¢ Signal the time to log off from an application

e Keep a network connection to a server online (keep it alive)
e Define time limit to work on a task

The WACG 2.2.1: Timing Adjustable determines that for each time limit that
is set by the content, at least one of the following is true: the user can turn
off, adjust, or extend it. The Time Limit Configuration annotation reminds
designers to provide users with the ability to control session timeouts, task
limits, or inactivity-based events

Accessibility Design Tools - Cognitive Experience Page 276

Examples
& Purchase Track ® ©

4 1his app will update in 5 minutes. ostpone 1 hour Q) I
Turn off, Adjust, Extend

& touchpoints will refresh in 5 minutes.

@
O
c

2
o
0]
Q
X

(i
o

2

=
=
oD
o)

O

Touchpoints @

H Facebook v
: @ Connnecting touchpoints

Linkedin R £ Time Limit: CONTENT REFRESH
Facebook v H

Linkedin v

Shared Reviews Contributions v

40

Updates: every 2 minutes ®

30

Time Limit: TIMEOUT INFO
On January | bought a Bag to 2 Data loss due to inactive
board a small plane that fit
rfectly
perfectly 1
Instagram 89K Views
o

March April May June July
This is my experience with a
termo pump | purchased on = - =
Faceb Instag Linke
Shop.com... ook ram din

Facebook 75 Views

Reports available

Figure 189: Multiple Ul elements that update, refresh or change based on
time are annotated with time limit annotations.

Time Limit: TIMEOUT PROGRESS
Data entered or progress tracked

®

Figure 190: A progress bar annotated with the Timeout - Data and Progress
tracked annotation

~ Updating data

Accessibility Design Tools - Cognitive Experience Page 277

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

3 Time Limit: VISUAL STATUS UPDATE ¢

13:01 of inactivity. System is set to auto-logout after 15
minutes of in Ak

Time Limit: INTERRUPTION EXPECTED

Automatic Refresh, Alerts, Update

A status message is also sent to screen
readers using aria-live="assertive" or
role="alert".

- JE

o

Figure 191: A dialog for a wire transfer that will automatically log the user out
in 2 minutes annotated with the Timeout - Interruption expected annotation

and the Time Limit: Visual Status Update

Time limit: INTERRUPTION EXPECTED
Automatic Refresh, Alerts, Update

Logout due to inactivity.

.
‘ mathiew1973@mail.com ‘

Log in

.

J

Figure 192: A dialog for a wire transfer that logs the user out due to inactivity

annotated with the Timeout - Interruption expected annotation

Accessibility Design Tools - Cognitive Experience

Page 278

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Shared Benefits

Without Vision

Screen Reading

For screen reader users, updating regions should use ARIA live regions (e.g,
aria-live="polite" or assertive") to notify without disrupting interaction. This
relates to WCAG 4.1.3: Status Messages.

Limited Mobility

Interactions

Time limits can exclude users with limited mobility who need more time to
navigate or complete tasks due to slower or assistive input methods. Giving
options to extend or disable time limits reduces stress, prevents errors, and
supports equal access.

For Developers
Ensure, by providing respective framework controls, that there are options
to:

e Disable time limits
e Customize the length of time limits
e Request to extend the time limit before it expires

Indicate clearly areas on the screen that are refreshed automatically or
because of user interaction.

Accessibility Design Tools - Cognitive Experience Page 279

References

WCAG 2.2 Reference

2.2.1 Timing Adjustable (A)

2.2.2 Pause, Stop, Hide (A)

2.2.3 No Timing (AAA)

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

2.2.6 Timeouts (AAA)

3.2.2 On Input (A)

4.1.3 Status Messages (AA)

Accessibility Design Tools - Cognitive Experience Page 280

https://www.w3.org/WAI/WCAG22/Understanding/timing-adjustable.html
https://www.w3.org/WAI/WCAG22/Understanding/pause-stop-hide.html
https://www.w3.org/WAI/WCAG22/Understanding/no-timing.html
https://www.w3.org/WAI/WCAG22/Understanding/timeouts.html
https://www.w3.org/WAI/WCAG22/Understanding/on-input.html
https://www.w3.org/WAI/WCAG22/Understanding/status-messages.html

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Multiple Ways

Provide users with multiple clear ways to find and return to content, such as
search, navigation menus, breadcrumbs, or contextual links, so they can
move forward with confidence and easily backtrack without losing their
place.

Component Variants

Multiple Ways

Q Multiple Ways

Search, Navigation Menu, Breadcrumb, Related Links

Figure 193: Use this to indicate multiple ways for accessing content by
navigation

About Multiple Ways

Not everyone interacts with content in the same way. To fulfill the
requirement for offering multiple ways to access information, you should
provide at least two distinct options for users to locate and reach any given
page or piece of content in a digital product. Alternative navigation
methods ensure users are not stuck in one path to find content and help
them discover and recover information distributed across multiple pages.
This requirement does not apply if the page or content is a mandatory part
of a process or a specific step that must be completed in order.

Providing users Multiple Ways to access the pages in a product comes in
alignment with WCAG 3.2.3 Consistent Navigation requirement. Repeating
Ul elements and features like search, navigation menus, site maps, and
breadcrumbs provides a predictable and consistent strategy for users to
get to the content they are looking for using the ways that most fit their
needs. Users may find one technique easier or more comprehensible to
use than another

The design specification is likely to live at the product level so that such
options are found consistently applied across pages of the same product.
Here is what designers should observe and implement:

1. Include a search function where relevant: If the product has a large set of
content, such as help documentation, product listings, FAQs, is search
available? Designers are responsible for designing a prominent and
accessible search field as an alternate method to locate specific

Accessibility Design Tools - Cognitive Experience Page 281

content. Category filters are also helpful as an alternate way to find
content.

2. Provide navigation menus or site maps: Is there a consistent global or
section-level navigation system? Designers should ensure users can
browse through menus and that these menus provide access to all
major areas of the interface.

3. Use lists of related content: Are related or recently viewed items
presented? Designers should find patterns that suggest additional paths
to content that users may find helpful.

4. Provide clear hierarchical navigation (Breadcrumbs): Are users able to
understand where they are and jump to previous levels? Designers
should include breadcrumbs in your design for multi-level page
structures.

5. Facilitate filtering and sorting: Can users control how they access
content, such as filters for job listings? Designers should provide flexible
browsing tools that support diverse information-seeking behaviors.

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Observe flags that could cause accessibility violations:

e Design lacks Search or secondary navigation.
e Content is deeply nested and inaccessible.
¢ Content that leads to more content on a non-linear exploration.

Examples

Recipes Cookbook

Q Multiple Ways [1 - Search]
Search, Navigation Menu, Breadcrumb, Related Links

Q Soups

. . Multiple Ways [3 - Breadcrumb]
Recipes categories Home / Popular / Soups Q Search, Navigation Menu, Breadcrumb, Related Links

Q Multiple Ways [2 - Nav Menu]
Search, Navigation Menu, Breadcrumb, Related Links

Figure 194: A cooking webpage with three different ways to find recipes
annotated with the multiple ways annotation

Accessibility Design Tools - Cognitive Experience Page 282

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Shared Benefits

Limited Mobility

Interactions

Users with limited dexterity, switch devices, or speech navigation may
struggle to navigate through nested menus or perform precise movements.
Multiple Ways helps them because it enables shortcuts to content (e.g,
through search or quick links), reducing the need for repeated or fine motor
interactions. It also reduces fatigue by avoiding long sequences of
navigation or scrolling. And finally, it allows users to choose the most
accessible navigation method for their setup (e.g., skipping menus in favor
of filtered tables or voice-based navigation).

Vision and Color Limitation

% Visuals

Users who rely on screen readers or maghnification tools may not perceive
visual menus or might get lost in long pages. This requirement helps users
because search or landmark navigation allows users to jump directly to
content without navigating visual menus.

e Consistent heading structure and landmark roles help screen reader
users skim and locate content more efficiently.

e For magnification users, avoiding excess scrolling through alternative
paths (e.g, filters, in-page links) reduces cognitive and physical strain.

For Developers

Provide users with established Ul patterns to find and return to content
such as search, navigation menus, breadcrumbs, or contextual links, so they
can move forward with confidence and easily backtrack without losing their
place.

Accessibility Design Tools - Cognitive Experience Page 283

References

WCAG 2.2 Reference

2.4.5 Multiple Ways (AA)

3.2.3 Consistent Navigation (AA)

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Accessibility Design Tools - Cognitive Experience Page 284

https://www.w3.org/WAI/WCAG22/Understanding/multiple-ways.html
https://www.w3.org/WAI/WCAG22/Understanding/consistent-navigation.html

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)
O

Redundant Entry

Reuse previously entered information by prefill or auto-populate input

Component Variants

Redundant Entry

E_a Redundant Entry

Prefill or auto-populate previously entered information

Figure 195: Reuse previously entered information by prefill or auto-populate
input.

About Redundant Entries

If a user has already entered information earlier in a process, they should
not have to re-enter it unless it is essential. This requirement fulfills WCAG
3.3.7 (A) Redundant Entry, which reminds designers to observe how to
reduce the cognitive workload of the user and physical burden in multi-
step forms, processes, or flows (e.g., checkout, onboarding, applications).

Follow these practical questions to reduce redundant entries:
Is the process multi-step?

¢ If yes, track what data is being collected at each step.
¢ Avoid asking for the same piece of info more than once (e.g., name,
address).

Can earlier info be prefilled or referenced?

e Design forms to carry user input forward to later steps.
e Provide clear confirmation. Example confirmation message: “Is this
still your shipping address?”.

Design for Memory Relief. You should not expect users to recall information
they have already entered. Instead, show previously entered values clearly
and accessibly throughout the process. This practice reduces the cognitive
load on the user, prevents mistakes, and makes the overall experience
smoother and more reliable.

Lastly, when users need to fix something, give them the ability to edit
previously entered data. This can be done by providing a link back to a
specific step or by making fields editable directly within a summary screen.

Accessibility Design Tools - Cognitive Experience Page 285

Examples

WireTransfer
]

[mathiew1973@mail.c0m]

@
O
c

2
o
0]
Q
X

(i
o

2

=
=
oD
o)

O

I_:_%J Redundant Entry

Prefill or auto-populate previously entered information

. J

Figure 196: Login Screen with the E-Mail input field auto populated. This field
is annotated with the redundant entry annotation

>
| Billing Address

Name: | John Johnson
ZIP Code/City: | 12345 | | Maintown

Street/No: Mainstreet 1618

Shipping Address
L—_{I Redundant Entry

: . . : ~| same as billing address
Prefill or auto-populate previously entered information D . Sl

Name: | John Johnson

ZIP Code/City: | 12345 Maintown

Figure 197: Dialog showing how the shipping address in a checkout process
is auto populated, when the option “same as billing address” is selected. This
is annotated with the redundant entry annotation

Accessibility Design Tools - Cognitive Experience Page 286

@
O
c

2
Lo
0]
Q
X

(i
o

=

=
=
oD
o)

O

Shared Benefits

Limited Mobility

Interactions

Minimize physical effort for users with limited dexterity by avoiding the
need to retype lengthy entries. Instead, incorporate features such as autofill
and straightforward selection options, such as checkboxes. For instance,
include a choice to set the billing address as the shipping address and
implement single sign-on (SSO) or account prefill options whenever
feasible.

For Developers
Prefill information as often as possible.

Use caching mechanisms of the platform to reuse previously entered
information to auto-populate respective input on new pages.

References

WCAG 2.2 Reference

3.3.7 Redundant Entry (A)

“A convenient file with amazing ready to use
assets available.”

' Zhanara Baisalova — UX Designer

Accessibility Design Tools - Cognitive Experience Page 287

https://www.w3.org/WAI/WCAG22/Understanding/redundant-entry.html

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

Auditory Experience

Imagine watching a video presentation and never missing
important information. What turns audio-only content into
inclusive communication? The answer is visual notifications,
transcripts, and captions that allow users who are deaf or
hard of hearing to stay fully informed and engaged.

This chapter helps designers to address audio content to meet the needs
of users who are deaf and hard of hearing.

The Inclusive Auditory Experience

Design your application with visual and text-based communication so
everyone can access information, especially users who are deaf and hard
of hearing.

Users who are deaf and hard of hearing benefit from interfaces that provide
multiple ways to access and communicate information. When interfaces
support different communication methods, users can navigate and interact
with confidence.

Interfaces with vibration alerts and visual notifications help users who are
deaf or hard of hearing get essential updates. These combined approaches
also benefit users who have their audio turned off, users with cognitive
disabilities who find audio alerts distracting, and anyone in environments
where audio isn’t practical.

Captions enable users who are deaf or hard of hearing to follow audio and
video content as it plays. These synchronized text alternatives also help
people with cognitive disabilities who process text better than audio, have
sound sensitivities, or are easily distracted by background noise. Captions
can benefit all users who want to access audio content in noisy or quiet
settings.

Transcripts benefit users who are deaf or hard of hearing. Unlike captions,
they can access content without relying on video playback, allowing them
the freedom to read at their own pace. Transcripts also benefit anyone who
wants to skim, review, or search content for specific information.

Accessibility Design Tools - Auditory Experience Page 288

Q
O
c
Q
=
[0}
Q
X
L
)
e
O
5=
)
)
<

Principles

Hard of Hearing
LU

Persona: Harold

“l have a severe hearing loss. | struggle to
acquire knowledge or follow meetings
when audio alternatives are not available:
captions, transcripts, or sign language.”

Hearing differences can affect people in many ways. According to the World
Health Organization, disabling hearing loss is defined as hearing loss
greater than 35 decibels in the ear that hears better, meaning the ear with
the least hearing loss or the one that can detect sounds more clearly.
Individuals who identify as Deaf or hard of hearing may experience a broad
spectrum of hearing levels.?? These terms describe experiences rather than
limitations.

The prevalence of hearing loss increases with age. Among people older
than 60 years, over 25 percent are affected by disabling hearing loss (WHO,
2025). These individuals may encounter various challenges when using
digital products due to their communication needs and preferences.

Common causes of hearing loss are:

e Age, Medication, Infection

e Foreign body, Fluid in the middle ear
e Perforated tympanic membrane

e Otosclerosis

¢ Neurologic conditions

Some statistics:

e Over 430 million people worldwide have disabling hearing loss.?
e About 15% of US adults report some hearing difficulty.'’

¢ Inthe U.S, hearing loss affects about one-third of people aged 65-74
and nearly half of those over 75.13

Accessibility Design Tools - Auditory Experience Page 289

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

e 12.3% of interviewed US adults had some difficulties hearing even when
using a hearing aid in 2020.3

Permanent disabilities include users with chronic hearing loss or impairment
that may be associated to genetic factors. It may also include age-related hearing
loss (presbycusis), or due to noise exposure, infections and illnesses, injury or
trauma and medication.

Situational & Temporary Disabilities

By integrating situational and temporary disabilities into this disability
group, we help design teams address challenges that might not be
permanent but still impact user experience under certain conditions.

Temporary hearing challenges, such as those caused by noisy
environments or infections, also affect many people. These are some
examples of situational and temporary disability for hearing.

e Background noise: A noisy environment, such as a crowded restaurant or
public transportation, could temporarily impair hearing, making it hard to
hear conversations or instructions.

e Temporary hearing loss: Conditions like ear infections, colds, or
exposure to loud noises could lead to short-term hearing loss.

e Fatigue or stress: Mental fatigue or emotional stress could cause
temporary difficulty processing sounds, making communication harder.

Accessibility Design Tools - Auditory Experience Page 290

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

General Design Tips
1.

Captions, Transcripts, and Sign Language Interpretation:
Audio cues in videos, podcasts, or voice instructions can often be
inaccessible, causing important information to be missed. Video
conferencing tools may lack real-time captions or transcription, and
inaccessible social media features can limit participation.

Design Tips: Provide closed captions, subtitles, and transcripts for all
audio and video content. Use clear visual alerts and error indicators.
Ensure video platforms support live transcription and interpretation.
Promote accessible social media and community features.

. Real-Time Transcription for Conversations and Meetings:

Users may feel excluded without live transcription during one-on-one or
small group conversations.

Design Tips: Support live transcription and captioning features during
meetings to ensure inclusive communication.

. Adjustable Volume and Vibration Notifications:

Audio-only alerts can be missed by users with hearing impairments.

Design Tips: Incorporate vibration alerts and visible notifications
alongside audio cues to ensure that all users notice important updates.

. Visual Alerts and Clear Error Signifiers:

Relying only on sound for warnings or errors excludes users with hearing
loss.

Design Tips: Use visual cues such as icons, color changes, or message
banners to communicate errors and warnings clearly.

. Text-Based Communication (Chat and Messaging):

Many users may not be aware of assistive technologies such as speech-
to-text apps, limiting their communication options.

Design Tips: Integrate robust chat and messaging features. Support
speech-to-text tools that convert spoken words into text and vice versa.
Provide user guidance and education on available assistive
technologies.

Accessibility Design Tools - Auditory Experience Page 291

Annotations

Hearing Annotations

This checklist helps designers remember the key accessibility aspects that
should be addressed during the design phase.

Q
O
c
Q
=
[0}
Q
X
L
)
e
O
5=
)
)
<

Auditory Experience Checklist

(O Caption
(O Transcript

Accessibility Design Tools - Auditory Experience Page 292

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

Caption

Provide synchronized captions for all pre-recorded and live media
containing speech or other meaningful sound.

Component Variants

Caption as an audio media alternative

E Caption

Figure 198: Indicates written text alternatives for audio content (speech,
sounds, etc.)

Live Caption as an audio media alternative

Live Caption

Figure 199: Indicates caption for live audio events
About Captions

People who are Deaf or Hard of Hearing rely on visual alternatives to
understand pre-recorded or live audio-based content, such as videos and
live events. Captions are visual text alternatives and must be synchronized
with the media timeline for spoken dialogue, narration, and important
sounds within videos, ensuring that users can fully engage with media and
audio content. Pre-recorded tutorials, promotional videos, training
materials, and other recorded content are expected to include captions to
ensure accessibility.

Live Captioning as per WCAG 2.2 1.2.2 Captions (Prerecorded) (A) all pre-
recorded audio in video (synchronized media) should include captions,
unless the video is already a text alternative. While captions make speech,
sound effects, and audio cues visible, it can also include non-spoken
words, for example, meaningful sounds like phone rings and cheering
complement the context of the audio. WCAG 2.2 1.2.4 Captions (Live) (AA)
recommends providing live captions for live audio content, also for live
events ensuring real-time delivery.

Accessibility Design Tools - Auditory Experience Page 293

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

Live captions are intended to help Deaf and Hard of Hearing users’ access
to real-time presentations. They are used to support broadcast of
synchronized media but are not required on two-way multimedia calls. Live
captions should identify who is speaking and indicate relevant sound
effects or other significant audio. Responsibility for providing captions falls
to the content providers (the callers) or the “host” caller, and not the
application itself.

Automated live captions may contain errors if the audio quality is poor, or
the content is complex. In these cases, captions created by a human
captioner may need manual editing. assuming an audio transcript was
created. When an audio transcript is created, a synchronized and
searchable transcript will then appear alongside the recorded video,
providing more accurate content than the original live captions.

WCAG 2.2 1.2.9 Audio-only (Live) (AAA) recommends live caption as real-
time audio alternative synchronized with speech and sounds. This service
is typically provided by trained human operators. Captions are preferred
over transcripts for live events because they can adapt to unscripted
content and follow the pace of the audio. While transcripts may be
acceptable for scripted events, they do not meet accessibility needs when
audio deviates from the script.

Design Tips

e The annotations allow designers to guide the placement of the
caption button and determine where the caption text should appear
within the video.

e The design should ensure that captions are clearly visible by
considering caption placement, font size, and contrast. Captions
should be synchronized with the video and must not block key
visuals.

e Where possible, give users control to turn captions on or off.
Captions must remain within the video.

User Assistants (UA)

When creating captions include speaker identification and relevant non-
speech sounds, such as laughter and door slams. High-quality captions
that cover both speech and environmental context help improve
comprehension for all users.

As a User Assistant, make sure captions include:

e All spoken dialogue
e Speaker identification, especially in videos with multiple speakers

Accessibility Design Tools - Auditory Experience Page 294

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

¢ Relevant non-speech sounds, such as [Applause], [Dramatic music],
[Phone ringing], etc.

Captions vs Transcripts

Use captions when designing media players, video components, or live
streaming tools. Include a toggle in your Ul and provide space for captions

near the video.

Use transcripts in supporting documentation, below or next to media
content, especially for podcasts, training materials, and legal content.

For more details consult the comparison table below.

Table 12: Comparison table with key features for caption and transcript.

Feature Caption Transcript

Definition Text displayed on screen Text Document that contains
that represents audio the full dialogue and audio
content in real-time, content. It does not have to
synchronized with video. be time-synchronized with a

video.

Purpose To provide real-time access | To allow users to read or
to spoken dialogue, sound | search through the content at
effects, and music cues their own pace, often for
during a video. reference or review.

Media Type Video with audio (transcript | Audio-only
is optional)

Includes speaker Yes, often Yes

identification

Supports real-time Yes Yes (but less immediate)

access

Time-synced to media Yes Sometimes, often not

precisely

Includes non-speech
sounds

Yes (e.g, [laughter], [door
slams])

Rarely

Displayed with media

Yes. On screen, during
playback

Separate from the media (can
be downloaded and
viewable as text)

Who benefits

Deaf and hard of hearing
users, non-native speakers,
anyone in noisy or silent
environments

Users who are Deafblind
(screen-reader users), people
who prefer reading,
researchers, or those seeking
quick reference

Accessibility Design Tools - Auditory Experience

Page 295

(0]
O
c
(]
=
(]
Q
<
L
e
S
@]
=
i®)
>
<

Examples

From Pyramids to startships m

Figure 200: Annotate where and how the captions within the video will

appear. Observe placement, text size and contrast.

Broadcast App

Live Caption
7]
B3 Live caption @

Live Broadcast

B3 Live caption [@IE3) Live Caption (<}

.
O
Figure 201: Extra services or functionalities that could be made available are

move caption window on the screen, pin or dock the caption window, and
translation that could be delivered with live caption.

Accessibility Design Tools - Auditory Experience Page 296

o Shared Benefits

g

@

Q 0 ege_ o
n Temporary Disabilities
>

S All users

=

=}

<

Captions are not just for Deaf or Hard of Hearing users. They benefit
everyone. In noisy settings, such as conferences or public transportation,
captions make it possible to follow videos without missing important
information. In quiet environments, such as libraries or shared workspaces,
they allow users engage with content discreetly.

During meetings, events, or webinars, live captions help non-native
speakers keep up with fast speech, unfamiliar accents, or technical
terminology, making communication more inclusive. They are especially
useful in conferences, live events, and broadcasts, where live captions
enable everyone to follow the conversation clearly.

Limited Cognition

' Cognitive

Captions can help users with cognitive disabilities, including ADHD and
other forms of neurodivergence, as well as anyone who processes text
more easily than audio. Reading along with spoken content can reinforce
memory, clarify meaning, and reduce coghnitive load.

Captions also provide a visual buffer for users who are sensitive to sound
or easily distracted by background noise, allowing them to engage with
media without being overwhelmed by sudden or repetitive audio. When
combined with system preferences like “Reduce Motion” or “Do Not
Disturb”, captions support a more comfortable and focused experience.

For Developers

Always use semantic <track> elements for captions and provide
accessible transcript links in code. Make sure that they load correctly
across browsers and support multiple languages when needed.

Accessibility Design Tools - Auditory Experience Page 297

Add <track> elements in your <video> tag;

<video controls> <source src="example.mpd" type="video/mp4"
/> <track src="captions-en.vtt" kind="captions" srclang="en"
label="English" default /> </video>

e Provide captions for all spoken content and meaningful sounds.
¢ Include multiple languages when required (using srclang + label).

e Test captions on major browsers and devices, including both
desktop and mobile.

Q
O
c
Q
=
[0}
Q
X
L
)
e
O
5=
)
)
<

iOS and Android

Please refer to the respective platform documentation and guidelines for
video controls and captions.

References

WCAG 2.2 Reference

1.2.2 Captions (Prerecorded) (A)

1.2.4 Captions (Live) (AA)

1.2.9 Audio-only (Live) (AAA)

Accessibility Design Tools - Auditory Experience Page 298

https://www.w3.org/TR/WCAG22/#captions-prerecorded
https://www.w3.org/TR/WCAG22/#captions-live
https://www.w3.org/TR/WCAG22/#audio-only-live

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

Transcript

Provide text transcripts for all audio-only content to support users who
prefer reading or rely on screen readers. Transcripts should include spoken
dialogue and relevant sound cues when appropriate.

Component Variants

Transcript as an audio media alternative

@ Transcript

Figure 202: Indicates written text alternatives for audio content (speech,
sounds, etc.)

Live Transcript as an audio media alternative

Live Transcript

Figure 203: Indicates written text alternatives for audio content (speech,
sounds, etc.)

About Transcripts

People who are Deaf or Hard of Hearing rely on visual alternatives to
understand audio-based content. Transcripts are text-based documents
that provided as an alternative version of audio content, including dialog,
speech, and meaningful sounds. They can be used for pre-recorded or live
media such as interviews, podcasts, and webinars, allowing users to read,
search, and reference the information at their own pace. This makes the
experience more inclusive for everyone.

Pre-recorded transcripts are especially helpful for users who need
complete control over timing, such as those who read transcripts at their
own pace. They are useful when users need to skim, search, or copy text
from a media source.

There are two main types of transcripts:

¢ Plain Transcript: Covers all spoken dialogue or narration ensuring that
users who cannot hear can access the full meaning of the content. It
does not include visual descriptions or audio cues, and it is typically

Accessibility Design Tools - Auditory Experience Page 299

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

used for podcasts, interviews, and audio messages. Reference for audio
only: WCAG 2.2 SC 1.2.1 Audio-only and Video-only (Prerecorded) (A).

¢ Full Description Transcript: Includes spoken dialogue plus detailed
visual descriptions, providing a comprehensive alternative to video
media. This type benefits not only deaf users, but also those who cannot
see the video, such as blind or low vision users, describing important
visual elements. Example: “The presenter picks up a pen and pretends
to draw a circle over the diagram.” Reference for video with visuals:
WCAG 2.2 SC 1.2.3 Audio Description or Media Alternative (Prerecorded)
(A) and SC 1.2.8 Audio Description or Media Alternative (Prerecorded)
(AAA).

Live Transcripts (for Audio-only or Video Content)

Live transcripts provide a real-time, running text version of live audio
content. They support Deaf, Hard of Hearing users, non-native speakers,
and people in noisy environments follow the content as it unfolds. Unlike
live captions, live captions are not strictly time-synced, may include
speaker names, and can omit sound effects. They are especially useful
when live captioning is not available or practical.

Live transcripts can:

e Be displayed alongside the live media

¢ Include dialogue and sometimes speaker names

¢ Not be perfectly time-synced like live captions

e Usually do not include sound effects or visual cues unless added
manually

Live transcripts are useful when full captioning is not feasible. They provide
a valuable way to follow content in real time, review information, or skim for
key points. Because they are more flexible in format and delivery, they may
sometimes lag slightly more than captions.

Design tips for annotating transcripts:

e Provide clear buttons or links labeled “Transcript” that are easy to find.

e Position transcripts below the video or player in a collapsible section
with a download option, such as a download link.

e Clearly label all transcript links or buttons (e.g., “Transcript”)

¢ Allow users to control playback speed and transcript scrolling when
possible.

e For live content, offer real-time text through a visible transcript panel or
chat-style display

When audio-only live content is presented, provide a real-time transcript,
live notes, or chat-based summaries. If possible, offer a text alternative

Accessibility Design Tools - Auditory Experience Page 300

channel for participation, such as a Q&A in chat. Allow users to control the
pace by pausing or replaying the audio when streaming platforms support
it. Most importantly, provide post-event captioned recordings or full
transcripts.

User Assistant Roles

Provide clear transcripts so users can read content at their own pace
without relying on sound. Note whether the transcript includes speaker
names or non-verbal cues. Make sure it fully covers spoken content, audio
descriptions, file format information, and download options. Also include
descriptions of any visual elements shown in the media.

Q
O
c
Q
=
[0}
Q
X
L
)
e
O
5=
)
)
<

Accessibility Design Tools - Auditory Experience Page 301

Examples

Playing Recording = view Full transcript @

Q
O
c
Q
=
[0}
Q
X
L
)
e
O
5=
)
)
<

@ Transcript

00

(i
=
5
8

vy

Figure 204: Pre-recorded audio with an option to show transcript

My Music App

Playing The Girl From Ipanema

(Dnm\Mul\\Hlumw\|||||u||||||||||||||||||||||||||||||u||lmu|||||||||||||||||||||||||||||||||||

=) Audio transcript @

@ Transcript

A

Figure 205: Pre-recorded audio with an option to show transcript

Accessibility Design Tools - Auditory Experience Page 302

Meetings App Live Transcript

@ Ongoing Meeting =l Live Transcript

IEb Start Live Trasncript @ |

(0]
O
c
(]
=
(]
Q
<
L
e
S
@]
=
i®)
>
<

A /

Figure 206: Live transcript window: functionalities such as stop and save are
available to the user.

Accessibility Design Tools - Auditory Experience Page 303

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

Shared Benefits

Temporary Disabilities

All users

Transcripts are a valuable resource for everyone, and not just for
accessibility. They make it easy to skim or search through audio or video
content to find specific information quickly, which is especially useful for
busy professionals, students, or researchers.

In meetings or webinars, transcripts offer a convenient way to review what
was said, catch up if something was missed, or reference quotes accurately.

They are also helpful for people in quiet environments or those who prefer
reading over listening. Live transcripts help people who are non-native
speakers in conferences, events, and broadcasts follow real-time
conversation, especially if the speaker talks fast or uses unfamiliar terms.

Without Vision

Screen Reading

While Blind users may not benefit from captions, transcripts offer a
scannable, screen-reader-friendly alternative to audio content. A well-
structured transcript, especially one enhanced with headings, timecodes,
or ARIA landmarks, allows users to navigate, search, or review the material
without needing to listen from start to finish.

Transcripts also minimize reliance on complex sound-based navigation,
which can conflict with screen reader output. When audio cues, such as
chimes or voice prompts, are used, they should be clearly documented,
optional, and timed to avoid overlap with assistive technology feedback. In
summary, transcripts empower Blind users with greater control, efficiency,
and independence when accessing media content.

Accessibility Design Tools - Auditory Experience Page 304

Q
]
c
Q
=
(]
o
X
L
)
e
o
5=
©
S
<

Limited Cognition

Coghnitive

Transcripts support users with cognitive or learning disabilities by allowing
them to process content at their own pace. The ability to scan, reread,
highlight, or translate written information helps users retain key ideas and
manage attention.

For individuals who experience anxiety, language processing challenges, or
information overload, transcripts offer a calm, predictable alternative to
listening. They also promote task continuity, allowing users to return to key
information when needed, and without the pressure of real-time
comprehension.

For Developers

Always use semantic <track> elements (for captions) and accessible
transcript links in code. Verify they load correctly across browsers, support
multiple languages when needed.

Provide a transcript file (HTML or text) linked near the media:
Read Transcript
Ensure transcript includes:

e Spoken dialogue
e Relevant sound effects
e Speaker identification

Make it accessible: plain HTML text (no images of text).
iOS and Android

Please refer to the respective platform documentation and guidelines for
adding transcripts to media content.

Accessibility Design Tools - Auditory Experience Page 305

References

WCAG 2.2 Reference

1.2.1 Audio-only and video-only (Prerecorded) (A)

1.2.3 Audio Description or Media Alternative (Prerecorded) (A)

Q
O
c
Q
=
[0}
Q
X
L
)
e
O
5=
)
)
<

1.2.8 Media Alternative (Prerecorded) (AAA)

Accessibility Design Tools - Auditory Experience Page 306

https://www.w3.org/TR/WCAG22/#audio-only-and-video-only-prerecorded
https://www.w3.org/TR/WCAG22/#audio-description-or-media-alternative-prerecorded
https://www.w3.org/TR/WCAG22/#media-alternative-prerecorded

Closing Remarks

@

Closing Remarks

Knowledge transforms into impact when practiced.

We hope you found this updated guideline helpful. If you have made it this
far, congratulations! Your journey toward accessible design is well
underway. Now it is your turn to lead the way.

Crawl. Walk. Run. Iterate.

We know that building internal alignment is not always easy. Like any
complex practice, accessibility in design demands intention, planning,
collaboration, and persistence. Do not let obstacles slow you down, start
small, stay focused, and keep learning.

Always remember accessibility is amplified usability. If you are feeling like a
team of one, start with what is in your control.

Choose a few meaningful annotations and embed them into your current
design process. Every element you document, label, or clarify brings real
value to the user experience.

This could be the spark that changes how your team thinks about inclusion.
This could be the shift that inspires a broader conversation across your
organization. Be patient, be persistent, and above all, stay curious.

Let this edition be your toolkit. We are excited to see what you do next.

Irla, Nina and Stefan

Accessibility Design Tools - Closing Remarks Page 307

Authors

Closing Remarks

Irla Bocianoski Rebelo

User Experience Design Expert and Accessibility Lead
SAP Success Factors

Montreal, Canada

Nina Krauss

Accessibility Specialist
SAP Accessibility and Inclusive Design

Walldorf, Germany

Stefan Schnabel

User Experience Design Expert
SAP Accessibility and Inclusive Design

Walldorf, Germany

@\ Accessibility Design Tools - Closing Remarks Page 308

Closing Remarks

Contributors

Handbook Layout

Anton Steckert
Accessibility Specialist

Cover Design

Alexandra Yaneva
Accessibility Specialist

Olga Kordowski
Senior UX Designer

Collaborators

Anton Fischer
UX Designer SuccessFactors

Alvaro Laura Garcia
Senior User Experience Design Specialist Signavio

Liu Joy
UX Designer SuccessFactors

Sanket Kundu
UX Designer SuccessFactors

Ryan Lum
Senior User Experience Design Specialist Concur

Gundula Niemann
Accessibility Expert

Tanisha Rastogi
UX Designer SuccessFactors

Reviewers

Roldon Brown
Accessibility Specialist

Roland Buss
User Interface Design Expert

Accessibility Design Tools - Closing Remarks

Page 309

Closing Remarks

Tananda Darling
Accessibility Compliance Specialist

Carrie Hall
Senior Product Inclusion Specialist

Kimberly McGee
Senior Equity Strategist

Testimonials

Zhanara Baisalova
UX Designer CX
CX Product Design

Marvin Gille
UX Designer & Accessibility Advocate
Web Design System

Hanna Klymenko
Product Design Expert SuccessFactors
People PM Learning

Aisling Noone
UX Designer
UX Design Concepts

Sup Suh
Senior Product Designer
Mobile Design System

Adelina Todorova
UX Designer
Web Design System

Dominika Zamojska
UX Designer and Accessibility Lead CX UX
CX Product Design

© 2025 SAP SE or an SAP affiliate company. All rights reserved. See Legal
Notice on www.sap.com/legal-notice for use terms, disclaimers,
disclosures, or restrictions related to this material.

Accessibility Design Tools - Closing Remarks Page 310

http://www.sap.com/legal-notice

Appendix

Appendix

WCAG 2.2 Coverage

SAP created this set of annotations in alignment with the Web Content
Accessibility Guidelines (WCAG) version 2.2 from W3C.

The WCAG 2.2 guideline is divided into 4 groups of Success Criterion and
78 success criteria used by many organizations to create accessibility
reports.

This documentation covers all A and AA success criteria and some AAA.

Annotation Symbols

S Foundation

Visual Experience

@ Interaction Experience
@ Screen Reader Experience
Cognitive Experience

@ Auditory Experience

Accessibility Design Tools - Appendix Page 311

Appendix

Perceivable

Information and user interface components must be presentable to users

in ways they can perceive.

1.1 Text Alternative

1.1.1 Non-Text Content (A)

1.2 Time-Based Media

1.2.1 Audio-only and video-only (Prerecorded) (A)

1.2.2 Captions (Prerecorded) (A)

1.2.3 Audio Description or Media Alternative (Prerecorded) (A)

1.2.4 Captions (Live) (AA)

1.2.5 Audio Description (Prerecorded) (AA)

1.2.6 Sign Language (Prerecorded) (AAA)

1.2.7 Extended Audio Description (Prerecorded) (AAA)

1.2.8 Media Alternative (Prerecorded) (AAA)

1.2.9 Audio-only (Live) (AAA)

1.3 Adaptable

1.3.1 Info and Relationships (A)

1.3.2 Meaningful Sequence (A)

1.3.3 Sensory Characteristics (A)

1.3.4 Orientation (AA)

1.3.5 Identify Input Purpose (AA)

1.3.6 Identify Purpose (AAA)

1.4 Distinguishable

1.4.1 Use of Color (A)

1.4.2 Audio Control (A)

Accessibility Design Tools - Appendix

o8
()
o

2] C
o
)
)

2] C
</

©80
08
G0
08

@0 O

Page 312

https://www.w3.org/TR/WCAG22/#non-text-content
https://www.w3.org/TR/WCAG22/#audio-only-and-video-only-prerecorded
https://www.w3.org/TR/WCAG22/#captions-prerecorded
https://www.w3.org/TR/WCAG22/#audio-description-or-media-alternative-prerecorded
http://w3.org/TR/WCAG22/#captions-live
https://www.w3.org/TR/WCAG22/#audio-description-prerecorded
https://www.w3.org/TR/WCAG22/#sign-language-prerecorded
https://www.w3.org/TR/WCAG22/#extended-audio-description-prerecorded
https://www.w3.org/TR/WCAG22/#media-alternative-prerecorded
https://www.w3.org/TR/WCAG22/#audio-only-live
https://www.w3.org/TR/WCAG22/#info-and-relationships
https://www.w3.org/TR/WCAG22/#meaningful-sequence
https://www.w3.org/TR/WCAG22/#sensory-characteristics
https://www.w3.org/WAI/WCAG22/Understanding/orientation.html
https://www.w3.org/WAI/WCAG22/Understanding/identify-input-purpose.html
https://www.w3.org/TR/WCAG22/#identify-purpose
https://www.w3.org/TR/WCAG22/#use-of-color
http://w3.org/TR/WCAG22/#audio-control

Appendix

1.4.3 Contrast (Minimum) (AA)

1.4.4 Resize text (AA)

1.4.5 Images of Text (AA)

1.4.6 Contrast (Enhanced) (AAA)

1.4.7 Low or No Background Audio (AAA)

1.4.8 Visual Presentation (AAA)

1.4.9 Images of Text (No Exception) (AAA)

1.4.10 Reflow (AA)

1.4.11 Non-text Contrast (AA)

1.4.12 Text Spacing (AA)

1.4.13 Content on Hover or Focus (AA)

Operable

©
©
o)
no annotation
no annotation

©

no annotation

0000

User interface components and navigation must be operable.

2.1 Keyboard Accessible

2.1.1 Keyboard (A)

2.1.2 No Keyboard Trap (A)

2.1.3 Keyboard (No Exception) (AAA)

2.1.4 Character Key Shortcuts (A)

2.2 Enough Time

2.2.1 Timing Adjustable (A)

2.2.2 Pause, Stop, Hide (A)

2.2.3 No Timing (AAA)

2.2.4 Interruptions (AAA)

2.2.5 Re-Authenticating (AAA)

Accessibility Design Tools - Appendix

OO0 ©6066

no annotation

Page 313

https://www.w3.org/TR/WCAG22/#contrast-minimum
http://w3.org/TR/WCAG22/#resize-text
https://www.w3.org/TR/WCAG22/#images-of-text
https://www.w3.org/TR/WCAG22/#contrast-enhanced
https://www.w3.org/TR/WCAG22/#low-or-no-background-audio
https://www.w3.org/TR/WCAG22/#visual-presentation
https://www.w3.org/TR/WCAG22/#images-of-text-no-exception
https://www.w3.org/TR/WCAG22/#reflow
https://www.w3.org/TR/WCAG22/#non-text-contrast
https://www.w3.org/TR/WCAG22/#text-spacing
https://www.w3.org/TR/WCAG22/#content-on-hover-or-focus
https://www.w3.org/TR/WCAG22/#keyboard
https://www.w3.org/TR/WCAG22/#no-keyboard-trap
https://www.w3.org/TR/WCAG22/#keyboard-no-exception
https://www.w3.org/TR/WCAG22/#character-key-shortcuts
https://www.w3.org/TR/WCAG22/#timing-adjustable
https://www.w3.org/TR/WCAG22/#pause-stop-hide
https://www.w3.org/TR/WCAG22/#no-timing
https://www.w3.org/TR/WCAG22/#interruptions
https://www.w3.org/TR/WCAG22/#re-authenticating

Appendix

2.2.6 Timeouts (AAA)

2.3 Seizures and Physical Reactions

2.3.1 Three Flashes or Below Threshold (A)

2.3.2 Three Flashes (AAA)

2.3.3 Animation from Interactions (AAA)

2.4 Navigable

2.4.1 Bypass Blocks (A)

2.4.2 Page Title (A)

2.4.3 Focus Order (A)

2.4.4 Link Purpose (In Context) (A)

2.4.5 Multiple Ways (AA)

2.4.6 Headings and Labels (AA)

2.4.7 Focus Visible (AA)

2.4.8 Location (AAA)

2.4.9 Link Purpose (Link Only) (AAA)

2.4.10 Section Headings (AAA)

2.4.11 Focus Not Obscured (Minimum) (AA)

2.4.12 Focus Not Obscured (Enhanced) (AAA)

2.4.13 Focus Appearance (AAA)

2.5 Input Modalities

2.5.1 Pointer Gestures (A)

2.5.2 Pointer Cancellation (A)

2.5.3 Label in Name (A)

2.5.4 Motion Actuation (A)

2.5.5 Target Size (AAA)

Accessibility Design Tools - Appendix

©

©
©

no annotation

@

@

@
OO0 O0O0OCPOOOCDOOOCO®HA

Page 314

https://www.w3.org/TR/WCAG22/#timeouts
https://www.w3.org/TR/WCAG22/#three-flashes-or-below-threshold
https://www.w3.org/TR/WCAG22/#three-flashes
https://www.w3.org/TR/WCAG22/#animation-from-interactions
https://www.w3.org/TR/WCAG22/#bypass-blocks
https://www.w3.org/TR/WCAG22/#page-titled
https://www.w3.org/TR/WCAG22/#focus-order
https://www.w3.org/TR/WCAG22/#link-purpose-in-context
https://www.w3.org/TR/WCAG22/#multiple-ways
https://www.w3.org/WAI/WCAG21/Understanding/headings-and-labels
https://www.w3.org/TR/WCAG22/#headings-and-labels
https://www.w3.org/TR/WCAG22/#location
https://www.w3.org/TR/WCAG22/#link-purpose-link-only
https://www.w3.org/TR/WCAG22/#section-headings
https://www.w3.org/TR/WCAG22/#focus-not-obscured-minimum
https://www.w3.org/TR/WCAG22/#focus-not-obscured-enhanced
https://www.w3.org/TR/WCAG22/#focus-appearance
https://www.w3.org/TR/WCAG22/#pointer-gestures
https://www.w3.org/TR/WCAG22/#pointer-cancellation
https://www.w3.org/TR/WCAG22/#label-in-name
https://www.w3.org/TR/WCAG22/#motion-actuation
https://www.w3.org/TR/WCAG22/#target-size-enhanced

Appendix

2.5.6 Concurrent Input Mechanisms (AAA)

2.5.7 Dragging Movements (AA)

2.5.8 Target Size (Minimum) (AA)

Understandable

©e 60

Information and the operation of user interface must be understandable.

3.1 Readable

3.1.1 Language of Page (A)

3.1.2 Language of Parts (AA)

3.1.3 Unusual Words (AAA)

3.1.4 Abbreviations (AAA)

3.1.5 Reading Level (AAA)

3.1.6 Pronunciation (AAA)

3.2 Predictable

3.2.1 On Focus (A)

3.2.2 On Input (A)

3.2.3 Consistent Navigation (AA)

3.2.4 Consistent Identification (AA)

3.2.5 Change on Request (AAA)

3.2.6 Consistent Help (A)

3.3 Input Assistance

3.3.1 Error Identification (A)

3.3.2 Labels or Instructions (A)

3.3.3 Error Suggestion (AA)

3.3.4 Error Prevention (Legal, Financial, Data) (AA)

Accessibility Design Tools - Appendix

)
®
©
©
G0

no annotation

©
©0
©O00

@

©

no annotation

©O®0 O

Page 315

https://www.w3.org/TR/WCAG22/#concurrent-input-mechanisms
https://www.w3.org/TR/WCAG22/#dragging-movements
http://w3.org/TR/WCAG22/#target-size-minimum
https://www.w3.org/TR/WCAG22/#language-of-page
https://www.w3.org/TR/WCAG22/#language-of-parts
https://www.w3.org/TR/WCAG22/#unusual-words
https://www.w3.org/TR/WCAG22/#abbreviations
https://www.w3.org/TR/WCAG22/#reading-level
https://www.w3.org/TR/WCAG22/#pronunciation
https://www.w3.org/TR/WCAG22/#on-focus
https://www.w3.org/TR/WCAG22/#on-input
https://www.w3.org/TR/WCAG22/#consistent-navigation
https://www.w3.org/TR/WCAG22/#consistent-identification
https://www.w3.org/TR/WCAG22/#change-on-request
https://www.w3.org/TR/WCAG22/#change-on-request
https://www.w3.org/TR/WCAG22/#error-identification
https://www.w3.org/TR/WCAG22/#labels-or-instructions
https://www.w3.org/TR/WCAG22/#error-suggestion
https://www.w3.org/TR/WCAG22/#error-prevention-legal-financial-data

Appendix

3.3.5 Help (AAA) no annotation
3.3.6 Error Prevention (all) (AAA) no annotation
3.3.7 Redundant Entry (A)
3.3.8 Accessible Authentication (Minimum) (AA) no annotation
3.3.9 Accessible Authentications (Enhanced) (AAA) no annotation
Robust

Content must be robust enough that it can be interpreted by a wide variety
of user agents, including assistive technologies.

4.1 Compatible

4.1.1 Parsing (A) (obsolete in WCAG 2.2 and removed)

4.1.2 Name, Role, Value (A) @@
4.1.3 Status Messages (AA) @@

Conformance

For a web page to conform to WCAG 2.2, all of the following conformance
requirements must be satisfied:

5.1 Interpreting Normative Requirements

5.1 Interpreting Normative Requirements no annotation

5.2 Conformance Requirements Conformance Claims (Optional)

5.2.1 Conformance Level no annotation
5.2.2 Full Pages no annotation
5.2.3 Complete Process no annotation
5.2.4 Only Accessibility Supported Ways of Using Technologies no annotation
5.2.5 Non-Interference no annotation

5.3 Conformance Claims (Optional)

5.3.1 Required Components of a Conformance Claim no annotation
5.3.2 Optional Components of a Conformance Claim no annotation

5.4 Statement of Partial Conformance - Third Party Content

Accessibility Design Tools - Appendix Page 316

https://www.w3.org/TR/WCAG22/#help
https://www.w3.org/TR/WCAG22/#error-prevention-all
https://www.w3.org/TR/WCAG22/#redundant-entry
https://www.w3.org/TR/WCAG22/#accessible-authentication-minimum
https://www.w3.org/TR/WCAG22/#accessible-authentication-enhanced
https://www.w3.org/TR/WCAG22/#parsing
https://www.w3.org/TR/WCAG22/#name-role-value
https://www.w3.org/TR/WCAG22/#status-messages
https://www.w3.org/TR/WCAG21/#interpreting-normative-requirements
https://www.w3.org/TR/WCAG21/#cc1
https://www.w3.org/TR/WCAG21/#cc2
https://www.w3.org/TR/WCAG21/#cc3
https://www.w3.org/TR/WCAG21/#cc4
https://www.w3.org/TR/WCAG21/#cc5
https://www.w3.org/TR/WCAG21/#conformance-required
https://www.w3.org/TR/WCAG21/#conformance-optional

Appendix

5.4 Statement of Partial Conformance - Third Party Content

5.5 Statement of Partial Conformance — Language

5.5 Statement of Partial Conformance - Language

5.6 Privacy Considerations

5.6 Privacy Considerations

5.7 Security Considerations

5.7 Security Considerations

Accessibility Design Tools - Appendix

no annotation

no annotation

no annotation

Page 317

https://www.w3.org/TR/WCAG21/#conformance-partial
https://www.w3.org/TR/WCAG21/#conformance-partial-lang
https://www.w3.org/TR/WCAG22/#privacy-summary
https://www.w3.org/TR/WCAG22/#security-summary

Appendix

References

1.

ADA Site Compliance. (2023). 2023 ADA web accessibility lawsuit
statistics — Full report.
https://adasitecompliance.com/2023-ada-web-accessibility-lawsuit-

statistics-full-report/

American Academy of Ophthalmology. (2022). Glaucoma.
https://www.aao.org/eye-health/diseases/what-is-glaucoma

Centers for Disease Control and Prevention. (2022). QuickStats:
Percentage of adults aged =18 years who have difficulty hearing even
when using a hearing aid, by age group — National Health Interview
Survey, United States, 2020. MMWR Morbidity and Mortality Weekly
Report, 71(12).
https://www.cdc.gov/mmwr/volumes/71/wr/mm7112a5.htm

Centers for Disease Control and Prevention. (2023). Diabetic
retinopathy.
https://www.cdc.gov/diabetes/diabetes-complications/diabetic-

retinopathy.html

Centers for Disease Control and Prevention. (2025). Disability impacts
all of us infographic.
https://www.cdc.gov/disability-and-health/articles-

documents/disability-impacts-all-of-us-infographic.html

Centers for Disease Control and Prevention. (2025). Related conditions.
https://www.cdc.gov/disability-and-health/conditions/index.html

Community Eye Health Journal. (2018). World blindness and visual
impairment: Despite many successes, the problem is growing.
Community Eye Health Journal.
https://cehjournal.org/articles/10.56920/cehj.342

Frontiers in Physiology. (2020). Mobility in older community-dwelling
persons: A narrative review. Frontiers in Physiology, 11, 881.
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2
020.00881/full

Global Burden of Disease Study 2021 Collaborators. (2025). A
systematic analysis for the Global Burden of Disease Study 2021. The
Lancet, 403(10440), 2133-2162.
https://doi.org/10.1016/S0140-6736(24)00812-2

Accessibility Design Tools - Appendix Page 318

https://adasitecompliance.com/2023-ada-web-accessibility-lawsuit-statistics-full-report/
https://adasitecompliance.com/2023-ada-web-accessibility-lawsuit-statistics-full-report/
https://www.aao.org/eye-health/diseases/what-is-glaucoma
https://www.cdc.gov/mmwr/volumes/71/wr/mm7112a5.htm
https://www.cdc.gov/diabetes/diabetes-complications/diabetic-retinopathy.html
https://www.cdc.gov/diabetes/diabetes-complications/diabetic-retinopathy.html
https://www.cdc.gov/disability-and-health/articles-documents/disability-impacts-all-of-us-infographic.html
https://www.cdc.gov/disability-and-health/articles-documents/disability-impacts-all-of-us-infographic.html
https://www.cdc.gov/disability-and-health/conditions/index.html
https://cehjournal.org/articles/10.56920/cehj.342
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.00881/full
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.00881/full
https://doi.org/10.1016/S0140-6736(24)00812-2

Appendix

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

IBM Systems Sciences Institute. (2023). The cost of finding bugs later in
the software development lifecycle.
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-

sdlc

Journal of the Optical Society of America. (2012). Worldwide
prevalence of red-green color deficiency. Journal of the Optical Society
of America A, 29(3), 313-320.
https://opg.optica.org/josaa/abstract.cfm?URI=josaa-29-3-313

National Eye Institute. (2023). Facts about blindness.

National Institute on Deafness and Other Communication Disorders.
(2023, August 23). Age-related hearing loss. National Institutes of
Health.

https://www.ncbi.nlm.nih.gov/books/NBK559220

Psychiatry Research. (2023). Prevalence of attention deficit
hyperactivity disorder in adults: A systematic review and meta-analysis.
Psychiatry Research, 328,115042.
https://pubmed.ncbi.nlm.nih.gov/37708807/

Straits Research. (2024). Accessibility testing market size, share &
growth forecast by 2033.
https://straitsresearch.com/report/accessibility-testing-market

The Lancet Psychiatry. (2023). The global prevalence of ADHD in
children and adolescents: A systematic review and meta-analysis. The
Lancet Psychiatry, 10(8), 567—-578.
https://pubmed.ncbi.nlm.nih.gov/37495084/

Vital Health Stat 10. (2014). Summary health statistics for U.S. adults:
National Health Interview Survey, 2012. National Center for Health
Statistics.

https://pubmed.ncbi.nlm.nih.gov/24819891/

Wagner, R. K, Zirps, F. A., Edwards, A. A, Wood, S. G., Joyner, R. E.,
Becker, B. J,, Liu, G., & Beal, B. (2020). The prevalence of dyslexia: A new
approach to its estimation. PLOS ONE, 15(6), e0233877.
https://pmc.ncbi.nlm.nih.gov/articles/PMC8183124/

World Health Organization. (2019). International Classification of
Diseases 11th Revision (ICD-11) — Neurocognitive disorders.
https://icd.who.int/dev11/f/en

Accessibility Design Tools - Appendix Page 319

https://opg.optica.org/josaa/abstract.cfm?URI=josaa-29-3-313
https://www.ncbi.nlm.nih.gov/books/NBK559220
https://pubmed.ncbi.nlm.nih.gov/37708807/
https://straitsresearch.com/report/accessibility-testing-market
https://pubmed.ncbi.nlm.nih.gov/37495084/
https://pubmed.ncbi.nlm.nih.gov/24819891/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8183124/
https://icd.who.int/dev11/f/en
https://www.functionize.com/blog/the-cost-of-finding-bugs-later-in-the-sdlc

Appendix

20.

21.

22.

23.

World Health Organization. (2023). Fact sheet on blindness and vision
impairment.
https://www.who.int/news-room/fact-sheets/detail/blindness-and-
visual-impairment

World Health Organization. (2024, March 14). Over 1 in 3 people
affected by neurological conditions, the leading cause of illness and
disability worldwide.
https://www.who.int/news/item/14-03-2024-over-1-in-3-people-

affected-by-neurological-conditions--the-leading-cause-of-illness-and-

disability-worldwide

World Health Organization. (2025). Deafness and hearing loss.
https://www.who.int/news-room/fact-sheets/detail/deafness-and-

hearing-loss

World Wide Web Consortium. (2018). W3C issues improved
accessibility guidance for websites and applications.
https://www.w3.org/press-releases/2018/wcag21/

Accessibility Design Tools - Appendix Page 320

https://www.who.int/news/item/14-03-2024-over-1-in-3-people-affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide
https://www.who.int/news/item/14-03-2024-over-1-in-3-people-affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide
https://www.who.int/news/item/14-03-2024-over-1-in-3-people-affected-by-neurological-conditions--the-leading-cause-of-illness-and-disability-worldwide
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.w3.org/press-releases/2018/wcag21/
https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment

	Welcome
	Foreword
	Our Mission
	Our Target Groups
	What’s New in This Release

	Introduction
	Shifting the Paradigm
	How To Start
	Respect the Global Accessibility Market
	Be Aware of Remediation Costs
	Establish a Shift-Left Strategy
	Inclusive Design Program Strategies
	1. Improve Your Skills
	Know the Historical Context
	Understand User Groups and Disabilities
	Think Beyond Assistive Tools Support
	Differences between Web, Tablets and Mobile Devices
	Perform Automatic and Manual Testing
	Watch Training Videos

	2. Develop a Strategy
	Create Blueprints as Foundation
	Leverage Libraries and Inventories

	3. Establish an Accessibility Design Process
	Use Annotations
	Work with Checklists
	Plan Design Reviews

	Foundation
	Principles
	Designer
	Developer

	Annotations
	Component Name
	Component Variants
	Examples
	For Developers
	References

	Floorplan Name
	Component Variants
	Examples
	For Developers
	References

	Design Note
	Component Variants
	Examples
	For Developers
	References

	Visual Experience
	Principles
	Visual Impairment
	General Design Tips

	Annotations
	Color Contrast
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Theme
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Responsiveness
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Text Resize
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Text Spacing
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Tooltip
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Interaction Experience
	Principles
	Limited Mobility
	General Design Tips

	Annotations
	Input Mechanism
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Focus Order
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Initial Focus Position
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Focus Restore
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Skipping Group
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Shortcut
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Trigger
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Motion Alternative
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Minimum Target Size
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Journey
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Screen Reading Experience
	Principles
	Blindness
	General Design Tips

	Annotations
	Reading Order
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Label
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Description
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Live Message
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Heading
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Landmark
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Page Title
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Role and Properties
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Speech Output
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Audio Control
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Audio Description
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Language
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Cognitive Experience
	Principles
	Neurodiversity
	General Design Tips

	Annotations
	Wayfinding and Orientation
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Semantic Strategies
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Error Handling
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Motion Content
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Time Limit
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Multiple Ways
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Redundant Entry
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Auditory Experience
	Principles
	Hard of Hearing
	General Design Tips

	Annotations
	Caption
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Transcript
	Component Variants
	Examples
	Shared Benefits
	For Developers
	References

	Closing Remarks
	Authors
	Contributors

	Appendix
	WCAG 2.2 Coverage
	References

